import os import unittest import torch from tests import get_tests_input_path from TTS.tts.models.tacotron2 import Tacotron2 from TTS.tts.models.glow_tts import GlowTTS from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config from TTS.bin.extract_tts_spectrograms import inference torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") c = load_config(os.path.join(get_tests_input_path(), "test_config.json")) # set params from tacotron inference c.bidirectional_decoder = False c.double_decoder_consistency = False ap = AudioProcessor(**c.audio) # pylint: disable=protected-access class TestExtractTTSSpectrograms(unittest.TestCase): @staticmethod def test_GlowTTS(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) # create model model = GlowTTS( num_chars=32, hidden_channels_enc=48, hidden_channels_dec=48, hidden_channels_dp=32, out_channels=c.audio["num_mels"], encoder_type="rel_pos_transformer", encoder_params={ "kernel_size": 3, "dropout_p": 0.1, "num_layers": 6, "num_heads": 2, "hidden_channels_ffn": 16, # 4 times the hidden_channels "input_length": None, }, use_encoder_prenet=True, num_flow_blocks_dec=12, kernel_size_dec=5, dilation_rate=1, num_block_layers=4, dropout_p_dec=0.0, num_speakers=0, c_in_channels=0, num_splits=4, num_squeeze=1, sigmoid_scale=False, mean_only=False, ).to(device) model.eval() _ = inference('glow_tts', model, c, ap, input_dummy, input_lengths, mel_spec.permute(0, 2, 1), mel_lengths) print("GlowTTS extract tts spectrograms ok !") @staticmethod def test_Tacotron(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8,)).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) mel_lengths[0] = 30 # create model model = Tacotron2(num_chars=24, decoder_output_dim=c.audio["num_mels"], r=c.r, num_speakers=1).to(device) model.eval() _ = inference('tacotron2', model, c, ap, input_dummy, input_lengths, mel_spec, mel_lengths) print("Tacotron extract tts spectrograms ok !")