import math
import torch
from torch.optim.optimizer import Optimizer


# adapted from https://github.com/LiyuanLucasLiu/RAdam
class RAdam(Optimizer):

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
        self.buffer = [[None, None, None] for ind in range(10)]
        super(RAdam, self).__init__(params, defaults)

    def __setstate__(self, state):  # pylint: disable= useless-super-delegation
        super(RAdam, self).__setstate__(state)

    def step(self, closure=None):

        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError(
                        'RAdam does not support sparse gradients')

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if not state:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
                        p_data_fp32)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state['step'] += 1
                buffered = self.buffer[int(state['step'] % 10)]
                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2 ** state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * \
                        state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma

                    # more conservative since it's an approximated value
                    if N_sma >= 5:
                        step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (
                            N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    else:
                        step_size = group['lr'] / (1 - beta1 ** state['step'])
                    buffered[2] = step_size

                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay']
                                     * group['lr'], p_data_fp32)

                # more conservative since it's an approximated value
                if N_sma >= 5:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
                else:
                    p_data_fp32.add_(-step_size, exp_avg)

                p.data.copy_(p_data_fp32)

        return loss


class PlainRAdam(Optimizer):

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)

        super(PlainRAdam, self).__init__(params, defaults)

    def __setstate__(self, state):  # pylint: disable= useless-super-delegation
        super(PlainRAdam, self).__setstate__(state)

    def step(self, closure=None):

        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError(
                        'RAdam does not support sparse gradients')

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if not state:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
                        p_data_fp32)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state['step'] += 1
                beta2_t = beta2 ** state['step']
                N_sma_max = 2 / (1 - beta2) - 1
                N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)

                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay']
                                     * group['lr'], p_data_fp32)

                # more conservative since it's an approximated value
                if N_sma >= 5:
                    step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (
                        N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
                else:
                    step_size = group['lr'] / (1 - beta1 ** state['step'])
                    p_data_fp32.add_(-step_size, exp_avg)

                p.data.copy_(p_data_fp32)

        return loss