import json import os import librosa import torch import torch.utils.data from librosa.filters import mel as librosa_mel_fn from TTS.vc.modules.openvoice.models import SynthesizerTrn # vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu) # vc_config.audio.output_sample_rate class custom_sr_config: """Class defined to make combatible sampling rate defination with TTS api.py. Args: sampling rate. """ def __init__(self, value): self.audio = self.Audio(value) class Audio: def __init__(self, value): self.output_sample_rate = value class OpenVoiceSynthesizer(object): def __init__(self, vc_checkpoint, vc_config, use_cuda="cpu"): if use_cuda: self.device = "cuda" else: self.device = "cpu" hps = get_hparams_from_file(vc_config) self.vc_config = custom_sr_config(hps.data.sampling_rate) # vc_config.audio.output_sample_rate self.model = SynthesizerTrn( len(getattr(hps, "symbols", [])), hps.data.filter_length // 2 + 1, n_speakers=hps.data.n_speakers, **hps.model, ).to(torch.device(self.device)) self.hps = hps self.load_ckpt(vc_checkpoint) self.model.eval() def load_ckpt(self, ckpt_path): checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device)) a, b = self.model.load_state_dict(checkpoint_dict["model"], strict=False) # print("Loaded checkpoint '{}'".format(ckpt_path)) # print('missing/unexpected keys:', a, b) def extract_se(self, fpath): audio_ref, sr = librosa.load(fpath, sr=self.hps.data.sampling_rate) y = torch.FloatTensor(audio_ref) y = y.to(self.device) y = y.unsqueeze(0) y = spectrogram_torch( y, self.hps.data.filter_length, self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length, center=False, ).to(self.device) with torch.no_grad(): g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1) return g # source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav" def voice_conversion(self, source_wav, target_wav, tau=0.3, message="default"): if not os.path.exists(source_wav): print("source wavpath dont exists") exit(0) if not os.path.exists(target_wav): print("target wavpath dont exists") exit(0) src_se = self.extract_se(source_wav) tgt_se = self.extract_se(target_wav) # load audio audio, sample_rate = librosa.load(source_wav, sr=self.hps.data.sampling_rate) audio = torch.tensor(audio).float() with torch.no_grad(): y = torch.FloatTensor(audio).to(self.device) y = y.unsqueeze(0) spec = spectrogram_torch( y, self.hps.data.filter_length, self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length, center=False, ).to(self.device) spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device) audio = ( self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][0, 0] .data.cpu() .float() .numpy() ) return audio def get_hparams_from_file(config_path): with open(config_path, "r", encoding="utf-8") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) return hparams class HParams: def __init__(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, dict): v = HParams(**v) self[k] = v def keys(self): return self.__dict__.keys() def items(self): return self.__dict__.items() def values(self): return self.__dict__.values() def __len__(self): return len(self.__dict__) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): return setattr(self, key, value) def __contains__(self, key): return key in self.__dict__ def __repr__(self): return self.__dict__.__repr__() MAX_WAV_VALUE = 32768.0 def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): if torch.min(y) < -1.1: print("min value is ", torch.min(y)) if torch.max(y) > 1.1: print("max value is ", torch.max(y)) global hann_window dtype_device = str(y.dtype) + "_" + str(y.device) wnsize_dtype_device = str(win_size) + "_" + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=False, ) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec def spectrogram_torch_conv(y, n_fft, sampling_rate, hop_size, win_size, center=False): # if torch.min(y) < -1.: # print('min value is ', torch.min(y)) # if torch.max(y) > 1.: # print('max value is ', torch.max(y)) global hann_window dtype_device = str(y.dtype) + "_" + str(y.device) wnsize_dtype_device = str(win_size) + "_" + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" ) # ******************** original ************************# # y = y.squeeze(1) # spec1 = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], # center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) # ******************** ConvSTFT ************************# freq_cutoff = n_fft // 2 + 1 fourier_basis = torch.view_as_real(torch.fft.fft(torch.eye(n_fft))) forward_basis = fourier_basis[:freq_cutoff].permute(2, 0, 1).reshape(-1, 1, fourier_basis.shape[1]) forward_basis = ( forward_basis * torch.as_tensor(librosa.util.pad_center(torch.hann_window(win_size), size=n_fft)).float() ) import torch.nn.functional as F # if center: # signal = F.pad(y[:, None, None, :], (n_fft // 2, n_fft // 2, 0, 0), mode = 'reflect').squeeze(1) assert center is False forward_transform_squared = F.conv1d(y, forward_basis.to(y.device), stride=hop_size) spec2 = torch.stack( [forward_transform_squared[:, :freq_cutoff, :], forward_transform_squared[:, freq_cutoff:, :]], dim=-1 ) # ******************** Verification ************************# spec1 = torch.stft( y.squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=False, ) assert torch.allclose(spec1, spec2, atol=1e-4) spec = torch.sqrt(spec2.pow(2).sum(-1) + 1e-6) return spec def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): global mel_basis dtype_device = str(spec.dtype) + "_" + str(spec.device) fmax_dtype_device = str(fmax) + "_" + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) spec = torch.matmul(mel_basis[fmax_dtype_device], spec) spec = spectral_normalize_torch(spec) return spec def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.0: print("min value is ", torch.min(y)) if torch.max(y) > 1.0: print("max value is ", torch.max(y)) global mel_basis, hann_window dtype_device = str(y.dtype) + "_" + str(y.device) fmax_dtype_device = str(fmax) + "_" + dtype_device wnsize_dtype_device = str(win_size) + "_" + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=False, ) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) spec = torch.matmul(mel_basis[fmax_dtype_device], spec) spec = spectral_normalize_torch(spec) return spec