import os from TTS.config import BaseAudioConfig, BaseDatasetConfig from TTS.trainer import Trainer, TrainingArgs from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.forward_tts import ForwardTTS from TTS.utils.audio import AudioProcessor output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig( name="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") ) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, trim_db=60.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = SpeedySpeechConfig( run_name="speedy_speech_ljspeech", audio=audio_config, batch_size=32, eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, compute_input_seq_cache=True, run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="english_cleaners", use_phonemes=True, use_espeak_phonemes=False, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=50, print_eval=False, mixed_precision=False, sort_by_audio_len=True, max_seq_len=500000, output_path=output_path, datasets=[dataset_config], ) # # compute alignments # if not config.model_args.use_aligner: # manager = ModelManager() # model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") # # TODO: make compute_attention python callable # os.system( # f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" # ) # init audio processor ap = AudioProcessor(**config.audio.to_dict()) # load training samples train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) # init model model = ForwardTTS(config) # init the trainer and 🚀 trainer = Trainer( TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, ) trainer.fit()