import os from TTS.config.shared_configs import BaseAudioConfig from TTS.trainer import Trainer, TrainingArgs from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.configs.tacotron2_config import Tacotron2Config from TTS.tts.datasets import load_tts_samples from TTS.tts.models.tacotron2 import Tacotron2 from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.audio import AudioProcessor output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) audio_config = BaseAudioConfig( sample_rate=22050, resample=False, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training. do_trim_silence=True, trim_db=23.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", preemphasis=0.0, ) config = Tacotron2Config( # This is the config that is saved for the future use audio=audio_config, batch_size=32, eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, r=2, # gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]], double_decoder_consistency=False, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=150, print_eval=False, mixed_precision=True, sort_by_audio_len=True, min_seq_len=14800, max_seq_len=22050 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio output_path=output_path, datasets=[dataset_config], use_speaker_embedding=True, # set this to enable multi-sepeaker training decoder_ssim_alpha=0.0, # disable ssim losses that causes NaN for some runs. postnet_ssim_alpha=0.0, postnet_diff_spec_alpha=0.0, decoder_diff_spec_alpha=0.0, attention_norm="softmax", optimizer="Adam", lr_scheduler=None, lr=3e-5, ) # init audio processor ap = AudioProcessor(**config.audio.to_dict()) # load training samples train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) # init speaker manager for multi-speaker training # it mainly handles speaker-id to speaker-name for the model and the data-loader speaker_manager = SpeakerManager() speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples) # init model model = Tacotron2(config, speaker_manager) # init the trainer and 🚀 trainer = Trainer( TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, ) trainer.fit()