import os import random import sys import numpy as np import torch import torch.nn.functional as F import torch.utils.data import torchaudio from torchaudio.backend.sox_io_backend import load as torchaudio_sox_load from torchaudio.backend.soundfile_backend import load as torchaudio_soundfile_load torch.set_num_threads(1) def key_samples_by_col(samples, col): """Returns a dictionary of samples keyed by language.""" samples_by_col = {} for sample in samples: col_val = sample[col] assert isinstance(col_val, str) if col_val not in samples_by_col: samples_by_col[col_val] = [] samples_by_col[col_val].append(sample) return samples_by_col def get_prompt_slice(gt_path, max_sample_length, min_sample_length, sample_rate): rel_clip = load_audio(gt_path, sample_rate) sample_length = random.randint(min_sample_length, max_sample_length) gap = rel_clip.shape[-1] - sample_length if gap < 0: sample_length = rel_clip.shape[-1] // 2 gap = rel_clip.shape[-1] - sample_length rand_start = random.randint(0, gap) rand_end = rand_start+sample_length rel_clip = rel_clip[:, rand_start:rand_end] rel_clip = F.pad(rel_clip, pad=(0, max_sample_length - rel_clip.shape[-1])) cond_idxs = [rand_start, rand_end] return rel_clip, rel_clip.shape[-1], cond_idxs def load_audio(audiopath, sampling_rate): # better load setting following: https://github.com/faroit/python_audio_loading_benchmark if audiopath[-4:] == '.mp3': # it uses torchaudio with sox backend to load mp3 audio, lsr = torchaudio_sox_load(audiopath) else: # it uses torchaudio soundfile backend to load all the others data type audio, lsr = torchaudio_soundfile_load(audiopath) # stereo to mono if needed if audio.size(0) != 1: audio = torch.mean(audio, dim=0, keepdim=True) if lsr != sampling_rate: audio = torchaudio.functional.resample(audio, lsr, sampling_rate) # Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. # '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. if torch.any(audio > 10) or not torch.any(audio < 0): print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") # clip audio invalid values audio.clip_(-1, 1) return audio class XTTSDataset(torch.utils.data.Dataset): def __init__(self, config, samples, tokenizer, sample_rate, is_eval=False): self.config = config model_args = config.model_args self.failed_samples = set() self.debug_failures = model_args.debug_loading_failures self.max_conditioning_length = model_args.max_conditioning_length self.min_conditioning_length = model_args.min_conditioning_length self.is_eval = is_eval self.tokenizer = tokenizer self.sample_rate = sample_rate self.max_wav_len = model_args.max_wav_length self.max_text_len = model_args.max_text_length assert self.max_wav_len is not None and self.max_text_len is not None self.samples = samples if not is_eval: random.seed(config.training_seed) # random.shuffle(self.samples) random.shuffle(self.samples) # order by language self.samples = key_samples_by_col(self.samples, "language") print(" > Sampling by language:", self.samples.keys()) else: # for evaluation load and check samples that are corrupted to ensures the reproducibility self.check_eval_samples() def check_eval_samples(self): print("Filtering invalid eval samples!!") new_samples = [] for sample in self.samples: try: tseq, _, wav, _, _, _ = self.load_item(sample) except: pass # Basically, this audio file is nonexistent or too long to be supported by the dataset. if wav is None or \ (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \ (self.max_text_len is not None and tseq.shape[0] > self.max_text_len): continue new_samples.append(sample) self.samples = new_samples print("Total eval samples after filtering:", len(self.samples)) def get_text(self, text, lang): tokens = self.tokenizer.encode(text, lang) tokens = torch.IntTensor(tokens) assert not torch.any(tokens == 1), f"UNK token found in {text} -> {self.tokenizer.decode(tokens)}" # The stop token should always be sacred. assert not torch.any(tokens == 0), f"Stop token found in {text}" return tokens def load_item(self, sample): text = str(sample['text']) tseq = self.get_text(text, sample["language"]) audiopath = sample['audio_file'] wav = load_audio(audiopath, self.sample_rate) if text is None or len(text.strip()) == 0: raise ValueError if wav is None or wav.shape[-1] < (0.5 * self.sample_rate): # Ultra short clips are also useless (and can cause problems within some models). raise ValueError # get a slice from GT to condition the model cond, cond_len, cond_idxs = get_prompt_slice(audiopath, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate) return tseq, audiopath, wav, cond, cond_len, cond_idxs def __getitem__(self, index): if self.is_eval: sample = self.samples[index] sample_id = str(index) else: # select a random language lang = random.choice(list(self.samples.keys())) # select random sample index = random.randint(0, len(self.samples[lang]) - 1) sample = self.samples[lang][index] # a unique id for each sampel to deal with fails sample_id = lang+"_"+str(index) # ignore samples that we already know that is not valid ones if sample_id in self.failed_samples: if self.debug_failures: print(f"Ignoring sample {sample['audio_file']} because it was already ignored before !!") # call get item again to get other sample return self[1] # try to load the sample, if fails added it to the failed samples list try: tseq, audiopath, wav, cond, cond_len, cond_idxs = self.load_item(sample) except: if self.debug_failures: print(f"error loading {sample['audio_file']} {sys.exc_info()}") self.failed_samples.add(sample_id) return self[1] # check if the audio and text size limits and if it out of the limits, added it failed_samples if wav is None or \ (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \ (self.max_text_len is not None and tseq.shape[0] > self.max_text_len): # Basically, this audio file is nonexistent or too long to be supported by the dataset. # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. if self.debug_failures and wav is not None and tseq is not None: print(f"error loading {sample['audio_file']}: ranges are out of bounds; {wav.shape[-1]}, {tseq.shape[0]}") self.failed_samples.add(sample_id) return self[1] res = { # 'real_text': text, 'text': tseq, 'text_lengths': torch.tensor(tseq.shape[0], dtype=torch.long), 'wav': wav, 'wav_lengths': torch.tensor(wav.shape[-1], dtype=torch.long), 'filenames': audiopath, 'conditioning': cond.unsqueeze(1), 'cond_lens': torch.tensor(cond_len, dtype=torch.long), 'cond_idxs': torch.tensor(cond_idxs), } return res def __len__(self): if self.is_eval: return len(self.samples) return sum([len(v) for v in self.samples.values()]) def collate_fn(self, batch): # convert list of dicts to dict of lists B = len(batch) batch = {k: [dic[k] for dic in batch] for k in batch[0]} # stack for features that already have the same shape batch["wav_lengths"] = torch.stack(batch["wav_lengths"]) batch["text_lengths"] = torch.stack(batch["text_lengths"]) batch["conditioning"] = torch.stack(batch["conditioning"]) batch["cond_lens"] = torch.stack(batch["cond_lens"]) batch["cond_idxs"] = torch.stack(batch["cond_idxs"]) max_text_len = batch["text_lengths"].max() max_wav_len = batch["wav_lengths"].max() # create padding tensors text_padded = torch.IntTensor(B, max_text_len) wav_padded = torch.FloatTensor(B, 1, max_wav_len) # initialize tensors for zero padding text_padded = text_padded.zero_() wav_padded = wav_padded.zero_() for i in range(B): text = batch["text"][i] text_padded[i, : batch["text_lengths"][i]] = torch.IntTensor(text) wav = batch['wav'][i] wav_padded[i, :, :batch["wav_lengths"][i]] = torch.FloatTensor(wav) batch["wav"] = wav_padded batch["padded_text"] = text_padded return batch