# -*- coding: utf-8 -*- import datetime import glob import importlib import os import re import shutil import subprocess import sys from pathlib import Path import torch def get_cuda(): use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") return use_cuda, device def get_git_branch(): try: out = subprocess.check_output(["git", "branch"]).decode("utf8") current = next(line for line in out.split("\n") if line.startswith("*")) current.replace("* ", "") except subprocess.CalledProcessError: current = "inside_docker" except FileNotFoundError: current = "unknown" return current def get_commit_hash(): """https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script""" # try: # subprocess.check_output(['git', 'diff-index', '--quiet', # 'HEAD']) # Verify client is clean # except: # raise RuntimeError( # " !! Commit before training to get the commit hash.") try: commit = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode().strip() # Not copying .git folder into docker container except (subprocess.CalledProcessError, FileNotFoundError): commit = "0000000" print(" > Git Hash: {}".format(commit)) return commit def create_experiment_folder(root_path, model_name, debug): """Create a folder with the current date and time""" date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p") if debug: commit_hash = "debug" else: commit_hash = get_commit_hash() output_folder = os.path.join(root_path, model_name + "-" + date_str + "-" + commit_hash) os.makedirs(output_folder, exist_ok=True) print(" > Experiment folder: {}".format(output_folder)) return output_folder def remove_experiment_folder(experiment_path): """Check folder if there is a checkpoint, otherwise remove the folder""" checkpoint_files = glob.glob(experiment_path + "/*.pth.tar") if not checkpoint_files: if os.path.exists(experiment_path): shutil.rmtree(experiment_path, ignore_errors=True) print(" ! Run is removed from {}".format(experiment_path)) else: print(" ! Run is kept in {}".format(experiment_path)) def count_parameters(model): r"""Count number of trainable parameters in a network""" return sum(p.numel() for p in model.parameters() if p.requires_grad) def to_camel(text): text = text.capitalize() text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) text = text.replace("Tts", "TTS") return text def find_module(module_path: str, module_name: str) -> object: module_name = module_name.lower() module = importlib.import_module(module_path + "." + module_name) class_name = to_camel(module_name) return getattr(module, class_name) def get_user_data_dir(appname): if sys.platform == "win32": import winreg # pylint: disable=import-outside-toplevel key = winreg.OpenKey( winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" ) dir_, _ = winreg.QueryValueEx(key, "Local AppData") ans = Path(dir_).resolve(strict=False) elif sys.platform == "darwin": ans = Path("~/Library/Application Support/").expanduser() else: ans = Path.home().joinpath(".local/share") return ans.joinpath(appname) def set_init_dict(model_dict, checkpoint_state, c): # Partial initialization: if there is a mismatch with new and old layer, it is skipped. for k, v in checkpoint_state.items(): if k not in model_dict: print(" | > Layer missing in the model definition: {}".format(k)) # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} # 2. filter out different size layers pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} # 3. skip reinit layers if c.has("reinit_layers") and c.reinit_layers is not None: for reinit_layer_name in c.reinit_layers: pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} # 4. overwrite entries in the existing state dict model_dict.update(pretrained_dict) print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) return model_dict class KeepAverage: def __init__(self): self.avg_values = {} self.iters = {} def __getitem__(self, key): return self.avg_values[key] def items(self): return self.avg_values.items() def add_value(self, name, init_val=0, init_iter=0): self.avg_values[name] = init_val self.iters[name] = init_iter def update_value(self, name, value, weighted_avg=False): if name not in self.avg_values: # add value if not exist before self.add_value(name, init_val=value) else: # else update existing value if weighted_avg: self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value self.iters[name] += 1 else: self.avg_values[name] = self.avg_values[name] * self.iters[name] + value self.iters[name] += 1 self.avg_values[name] /= self.iters[name] def add_values(self, name_dict): for key, value in name_dict.items(): self.add_value(key, init_val=value) def update_values(self, value_dict): for key, value in value_dict.items(): self.update_value(key, value)