import os from TTS.config import BaseAudioConfig, BaseDatasetConfig from TTS.trainer import Trainer, TrainingArgs, init_training from TTS.tts.configs import FastPitchConfig output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig(name="ljspeech", meta_file_train="metadata.csv", meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"), path=os.path.join(output_path, "../LJSpeech-1.1/")) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=False, trim_db=0.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = FastPitchConfig( run_name="fast_pitch_ljspeech", audio=audio_config, batch_size=32, eval_batch_size=16, num_loader_workers=8, num_eval_loader_workers=4, compute_f0=True, f0_cache_path=os.path.join(output_path, "f0_cache"), run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="english_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=25, print_eval=True, mixed_precision=False, output_path=output_path, datasets=[dataset_config] ) args, config, output_path, _, c_logger, tb_logger = init_training(TrainingArgs(), config) trainer = Trainer(args, config, output_path, c_logger, tb_logger) trainer.fit()