{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false",
    "colab_type": "text",
    "id": "6LWsNd3_M3MP"
   },
   "source": [
    "# Mozilla TTS on CPU Real-Time Speech Synthesis with Tensorflow"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false",
    "colab_type": "text",
    "id": "FAqrSIWgLyP0"
   },
   "source": [
    "**These models are converted from released [PyTorch models](https://colab.research.google.com/drive/1u_16ZzHjKYFn1HNVuA4Qf_i2MMFB9olY?usp=sharing) using our TF utilities provided in Mozilla TTS.**\n",
    "\n",
    "These TF models support TF 2.2 and for different versions you might need to\n",
    "regenerate them. \n",
    "\n",
    "We use Tacotron2 and MultiBand-Melgan models and LJSpeech dataset.\n",
    "\n",
    "Tacotron2 is trained using [Double Decoder Consistency](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) (DDC) only for 130K steps (3 days) with a single GPU.\n",
    "\n",
    "MultiBand-Melgan is trained  1.45M steps with real spectrograms.\n",
    "\n",
    "Note that both model performances can be improved with more training.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false",
    "colab_type": "text",
    "id": "Ku-dA4DKoeXk"
   },
   "source": [
    "### Download Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 162
    },
    "colab_type": "code",
    "id": "jGIgnWhGsxU1",
    "outputId": "08b0dddd-4edf-48c9-e8e5-a419b36a5c3d",
    "tags": []
   },
   "outputs": [],
   "source": [
    "!gdown --id 1p7OSEEW_Z7ORxNgfZwhMy7IiLE1s0aH7 -O data/tts_model.pkl\n",
    "!gdown --id 18CQ6G6tBEOfvCHlPqP8EBI4xWbrr9dBc -O data/config.json"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 235
    },
    "colab_type": "code",
    "id": "4dnpE0-kvTsu",
    "outputId": "2fe836eb-c7e7-4f1e-9352-0142126bb19f",
    "tags": []
   },
   "outputs": [],
   "source": [
    "!gdown --id 1rHmj7CqD3Sfa716Y3ub_vpIBrQg_b1yF -O data/vocoder_model.pkl\n",
    "!gdown --id 1Rd0R_nRCrbjEdpOwq6XwZAktvugiBvmu -O data/config_vocoder.json\n",
    "!gdown --id 11oY3Tv0kQtxK_JPgxrfesa99maVXHNxU -O data/scale_stats.npy"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false",
    "colab_type": "text",
    "id": "Zlgi8fPdpRF0"
   },
   "source": [
    "### Define TTS function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {},
    "colab_type": "code",
    "id": "f-Yc42nQZG5A"
   },
   "outputs": [],
   "source": [
    "def tts(model, text, CONFIG, p):\n",
    "    t_1 = time.time()\n",
    "    waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, style_wav=None,\n",
    "                                                                             truncated=False, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars,\n",
    "                                                                             backend='tf')\n",
    "    waveform = vocoder_model.inference(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0))\n",
    "    waveform = waveform.numpy()[0, 0]\n",
    "    rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)\n",
    "    tps = (time.time() - t_1) / len(waveform)\n",
    "    print(waveform.shape)\n",
    "    print(\" > Run-time: {}\".format(time.time() - t_1))\n",
    "    print(\" > Real-time factor: {}\".format(rtf))\n",
    "    print(\" > Time per step: {}\".format(tps))\n",
    "    IPython.display.display(IPython.display.Audio(waveform, rate=CONFIG.audio['sample_rate']))  \n",
    "    return alignment, mel_postnet_spec, stop_tokens, waveform"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false",
    "colab_type": "text",
    "id": "ZksegYQepkFg"
   },
   "source": [
    "### Load Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {},
    "colab_type": "code",
    "id": "oVa0kOamprgj"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import time\n",
    "import IPython\n",
    "\n",
    "from TTS.tts.tf.utils.generic_utils import setup_model\n",
    "from TTS.tts.tf.utils.io import load_checkpoint\n",
    "from TTS.utils.io import load_config\n",
    "from TTS.tts.utils.text.symbols import symbols, phonemes\n",
    "from TTS.utils.audio import AudioProcessor\n",
    "from TTS.tts.utils.synthesis import synthesis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {},
    "colab_type": "code",
    "id": "EY-sHVO8IFSH"
   },
   "outputs": [],
   "source": [
    "# runtime settings\n",
    "use_cuda = False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {},
    "colab_type": "code",
    "id": "_1aIUp2FpxOQ"
   },
   "outputs": [],
   "source": [
    "# model paths\n",
    "TTS_MODEL = \"data/tts_model.pkl\"\n",
    "TTS_CONFIG = \"data/config.json\"\n",
    "VOCODER_MODEL = \"data/vocoder_model.pkl\"\n",
    "VOCODER_CONFIG = \"data/config_vocoder.json\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {},
    "colab_type": "code",
    "id": "CpgmdBVQplbv"
   },
   "outputs": [],
   "source": [
    "# load configs\n",
    "TTS_CONFIG = load_config(TTS_CONFIG)\n",
    "VOCODER_CONFIG = load_config(VOCODER_CONFIG)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 471
    },
    "colab_type": "code",
    "id": "zmrQxiozIUVE",
    "outputId": "fa71bd05-401f-4e5b-a6f7-60ae765966db",
    "tags": []
   },
   "outputs": [],
   "source": [
    "# load the audio processor\n",
    "TTS_CONFIG.audio['stats_path'] = 'data/scale_stats.npy'\n",
    "ap = AudioProcessor(**TTS_CONFIG.audio)         "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 72
    },
    "colab_type": "code",
    "id": "8fLoI4ipqMeS",
    "outputId": "595d990f-930d-4698-ee14-77796b5eed7d",
    "tags": []
   },
   "outputs": [],
   "source": [
    "# LOAD TTS MODEL\n",
    "# multi speaker \n",
    "speaker_id = None\n",
    "speakers = []\n",
    "\n",
    "# load the model\n",
    "num_chars = len(phonemes) if TTS_CONFIG.use_phonemes else len(symbols)\n",
    "model = setup_model(num_chars, len(speakers), TTS_CONFIG)\n",
    "model.build_inference()\n",
    "model = load_checkpoint(model, TTS_MODEL)\n",
    "model.decoder.set_max_decoder_steps(1000)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 489
    },
    "colab_type": "code",
    "id": "zKoq0GgzqzhQ",
    "outputId": "2cc3deae-144f-4465-da3b-98628d948506"
   },
   "outputs": [],
   "source": [
    "from TTS.vocoder.tf.utils.generic_utils import setup_generator\n",
    "from TTS.vocoder.tf.utils.io import load_checkpoint\n",
    "\n",
    "# LOAD VOCODER MODEL\n",
    "vocoder_model = setup_generator(VOCODER_CONFIG)\n",
    "vocoder_model.build_inference()\n",
    "vocoder_model = load_checkpoint(vocoder_model, VOCODER_MODEL)\n",
    "vocoder_model.inference_padding = 0\n",
    "\n",
    "ap_vocoder = AudioProcessor(**VOCODER_CONFIG['audio'])    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false",
    "colab_type": "text",
    "id": "Ws_YkPKsLgo-"
   },
   "source": [
    "## Run Inference"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 134
    },
    "colab_type": "code",
    "id": "FuWxZ9Ey5Puj",
    "outputId": "07ede6e5-06e6-4612-f687-7984d20e5254"
   },
   "outputs": [],
   "source": [
    "sentence =  \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n",
    "align, spec, stop_tokens, wav = tts(model, sentence, TTS_CONFIG, ap)"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "name": "DDC-TTS_and_MultiBand-MelGAN_TF_Example.ipynb",
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}