import functools import torch import torch.nn as nn import torch.nn.functional as F from transformers import GPT2Config, GPT2Model, GPT2PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions def null_position_embeddings(range, dim): return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) class GPT2InferenceModel(GPT2PreTrainedModel): """Override GPT2LMHeadModel to allow for prefix conditioning.""" def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): super().__init__(config) self.transformer = gpt self.pos_embedding = pos_emb self.embeddings = embeddings self.final_norm = norm self.lm_head = nn.Sequential(norm, linear) self.kv_cache = kv_cache def store_prefix_emb(self, prefix_emb): self.cached_prefix_emb = prefix_emb def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # usually None if not self.kv_cache: past_key_values = None # only last token for inputs_ids if past is defined in kwargs if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values is not None: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): assert self.cached_prefix_emb is not None assert inputs_embeds is None # Not supported by this inference model. assert labels is None # Training not supported by this inference model. return_dict = return_dict if return_dict is not None else self.config.use_return_dict # assert len(past_key_values) + len(input_ids) == attention_mask.shape[1] # Create embedding prefix_len = self.cached_prefix_emb.shape[1] if input_ids.shape[1] != 1: gen_inputs = input_ids[:, prefix_len:] gen_emb = self.embeddings(gen_inputs) gen_emb = gen_emb + self.pos_embedding(gen_emb) if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: prefix_emb = self.cached_prefix_emb.repeat_interleave( gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 ) else: prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) emb = torch.cat([prefix_emb, gen_emb], dim=1) else: emb = self.embeddings(input_ids) emb = emb + self.pos_embedding.get_fixed_embedding( attention_mask.shape[1] - (prefix_len + 1), attention_mask.device ) transformer_outputs = self.transformer( inputs_embeds=emb, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + transformer_outputs[1:] return CausalLMOutputWithCrossAttentions( loss=None, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past, beam_idx): """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) class LearnedPositionEmbeddings(nn.Module): def __init__(self, seq_len, model_channels, init_std=0.02, relative=False): super().__init__() self.emb = nn.Embedding(seq_len, model_channels) nn.init.normal_(self.emb.weight, mean=0.0, std=init_std) self.relative = relative def forward(self, x): seq_len = x.shape[1] if self.relative: start = torch.randint(seq_len, (1,), device=x.device).item() positions = torch.arange(start, start + seq_len, device=x.device) else: positions = torch.arange(seq_len, device=x.device) return self.emb(positions) def get_fixed_embedding(self, ind, dev): return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) def init_gpt(layers, model_channels, heads, max_mel_seq_len, max_text_seq_len, max_prompt_len, checkpointing): """ Initializes a GPT-2 model and its position embeddings for a text-to-speech system. Args: layers (int): Number of layers in the GPT-2 model. model_channels (int): Dimension of the GPT-2 model. heads (int): Number of heads in the GPT-2 model. max_mel_seq_len (int): Maximum sequence length for the mel spectrogram. max_text_seq_len (int): Maximum sequence length for the text. max_prompt_len (int): Maximum length of the prompt. checkpointing (bool): Whether to use gradient checkpointing. Returns: gpt (GPT2Model): GPT-2 model. mel_pos_emb (LearnedPositionEmbeddings): Position embeddings for the mel spectrogram. text_pos_emb (LearnedPositionEmbeddings): Position embeddings for the text. """ gpt_config = GPT2Config( vocab_size=123, n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, n_embd=model_channels, n_layer=layers, n_head=heads, gradient_checkpointing=checkpointing, use_cache=not checkpointing, ) gpt = GPT2Model(gpt_config) del gpt.wpe del gpt.wte gpt.wpe = functools.partial(null_position_embeddings, dim=model_channels) audio_pos_emb = ( LearnedPositionEmbeddings(max_mel_seq_len, model_channels) if max_mel_seq_len != -1 else functools.partial(null_position_embeddings, dim=model_channels) ) text_pos_emb = ( LearnedPositionEmbeddings(max_text_seq_len, model_channels) if max_mel_seq_len != -1 else functools.partial(null_position_embeddings, dim=model_channels) ) return gpt, audio_pos_emb, text_pos_emb class XTTSGPTEncoder(nn.Module): """XTTS GPT Encoder model implementation. Args: start_text_token (int): Index of the start token in the text vocabulary. stop_text_token (int): Index of the stop token in the text vocabulary. n_layers (int): Number of layers in the GPT-2 model. n_model_channels (int): Dimension of the GPT-2 model. n_heads (int): Number of heads in the GPT-2 model. max_text_tokens (int): Maximum number of text tokens. max_audio_tokens (int): Maximum number of audio tokens. max_prompt_tokens (int): Maximum number of prompt tokens. audio_len_compression (int): Compression factor for the audio length. number_text_tokens (int): Number of text tokens. number_audio_codes (int): Number of audio codes. start_mel_token (int): Index of the start token in the mel code vocabulary. stop_mel_token (int): Index of the stop token in the mel code vocabulary. checkpointing (bool): Whether or not to use gradient checkpointing at training. """ _inference_flag = False def __init__( self, start_text_token=261, stop_text_token=0, n_layers=8, n_model_channels=512, n_heads=8, max_text_tokens=120, max_audio_tokens=250, max_prompt_tokens=70, audio_len_compression=1024, number_text_tokens=256, number_audio_codes=8194, start_mel_token=8192, stop_mel_token=8193, checkpointing=True, label_smoothing=0.0, ): super().__init__() self.label_smoothing = label_smoothing self.number_text_tokens = number_text_tokens self.start_text_token = start_text_token self.stop_text_token = stop_text_token self.number_audio_codes = number_audio_codes self.start_mel_token = start_mel_token self.stop_mel_token = stop_mel_token self.start_prompt_token = start_mel_token self.stop_prompt_token = stop_mel_token self.n_layers = n_layers self.n_heads = n_heads self.n_model_channels = n_model_channels self.max_audio_tokens = -1 if max_audio_tokens == -1 else max_audio_tokens + 2 + self.max_conditioning_inputs self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 self.max_prompt_tokens = max_prompt_tokens self.audio_len_compression = audio_len_compression # embedding layers self.text_embedding = nn.Embedding(self.number_text_tokens, n_model_channels) self.audio_embedding = nn.Embedding(self.number_audio_codes, n_model_channels) self.prompt_embedding = nn.Embedding(self.number_audio_codes, n_model_channels) self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, n_model_channels) # initialize the GPT-2 model ( self.gpt, self.audio_pos_embedding, self.text_pos_embedding, ) = init_gpt( n_layers, n_model_channels, n_heads, self.max_audio_tokens, self.max_text_tokens, self.max_prompt_tokens, checkpointing, ) # output layers self.final_norm = nn.LayerNorm(n_model_channels) self.text_head = nn.Linear(n_model_channels, self.number_text_tokens) self.mel_head = nn.Linear(n_model_channels, self.number_audio_codes) def get_grad_norm_parameter_groups(self): return { "conditioning_encoder": list(self.conditioning_encoder.parameters()), "gpt": list(self.gpt.parameters()), "heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), } def init_model_for_inference(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False): self._inference_flag = True seq_length = self.max_prompt_tokens + self.max_audio_tokens + self.max_text_tokens gpt_config = GPT2Config( vocab_size=self.max_audio_tokens, n_positions=seq_length, n_ctx=seq_length, n_embd=self.n_model_channels, n_layer=self.n_layers, n_head=self.n_heads, gradient_checkpointing=False, use_cache=True, ) self.inference_model = GPT2InferenceModel( gpt_config, self.gpt, self.audio_pos_embedding, self.audio_embedding, self.final_norm, self.mel_head, kv_cache=kv_cache, ) self.gpt.wte = self.audio_embedding def set_inputs_and_targets(self, input, start_token, stop_token): inp = F.pad(input, (1, 0), value=start_token) tar = F.pad(input, (0, 1), value=stop_token) return inp, tar def set_audio_tokens_padding(self, audio_tokens, audio_token_lens): # Set padding areas within MEL (currently it is coded with the MEL code for ). for b in range(len(audio_token_lens)): actual_end = audio_token_lens[b] if actual_end < audio_tokens.shape[-1]: audio_tokens[b, actual_end:] = self.stop_mel_token return audio_tokens def get_logits( self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, prompt=None, get_attns=False, return_latent=False, attn_mask_text=None, attn_mask_mel=None, ): if prompt is not None and speech_conditioning_inputs is not None: offset = speech_conditioning_inputs.shape[1] + prompt.shape[1] if second_inputs is not None: emb = torch.cat( [speech_conditioning_inputs, prompt, first_inputs, second_inputs], dim=1, ) else: emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1) elif speech_conditioning_inputs is not None: offset = speech_conditioning_inputs.shape[1] if second_inputs is not None: emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) else: emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) elif prompt is not None: offset = prompt.shape[1] if second_inputs is not None: emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) else: emb = torch.cat([prompt, first_inputs], dim=1) # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): attn_mask = None if attn_mask_text is not None: attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) if prompt is not None: attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1) gpt_out = self.gpt( inputs_embeds=emb, return_dict=True, output_attentions=get_attns, attention_mask=attn_mask, ) if get_attns: return gpt_out.attentions enc = gpt_out.last_hidden_state[:, offset:] enc = self.final_norm(enc) if return_latent: return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] first_logits = enc[:, : first_inputs.shape[1]] first_logits = first_head(first_logits) first_logits = first_logits.permute(0, 2, 1) if second_inputs is not None: second_logits = enc[:, -second_inputs.shape[1] :] second_logits = second_head(second_logits) second_logits = second_logits.permute(0, 2, 1) return first_logits, second_logits else: return first_logits def get_conditioning(self, speech_conditioning_input): speech_conditioning_input = ( speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input ) conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) conds = torch.stack(conds, dim=1) conds = conds.mean(dim=1) return conds def get_prompts(self, prompt_codes): prompt = F.pad(prompt_codes, (1, 0), value=self.start_prompt_token) prompt = F.pad(prompt_codes, (0, 1), value=self.stop_prompt_token) return prompt def forward( self, text_inputs, text_lengths, audio_codes, wav_lengths, prompt_codes, return_attentions=False, return_latent=False, ): max_text_len = text_lengths.max() # Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values # Like [..., 186, 45, 45, 83] where actually it should end with 186. # We take last 3 codes to prevent abrupt ending of the audio. # TODO: This is might need some testing. mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3 # If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes. max_mel_len = mel_lengths.max() if max_mel_len > audio_codes.shape[-1]: audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1])) # silence aware lengths, skip the silence tokens at the end of the mel codes. silence = True for idx, l in enumerate(mel_lengths): length = l.item() while silence: if audio_codes[idx, length - 1] != 83: break length -= 1 mel_lengths[idx] = length # Lovely assertions assert ( max_mel_len <= audio_codes.shape[-1] ), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})" assert ( max_text_len <= text_inputs.shape[-1] ), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" # Append stop token to text inputs text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) # Append silence token to mel codes audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token) # Pad mel codes with STOP_MEL_TOKEN audio_codes = self.set_mel_padding(audio_codes, mel_lengths) # Compute speech conditioning input conds = None if speech_conditioning_input is not None: if not return_latent: # Compute speech conditioning input speech_conditioning_input = ( speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input ) conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) conds = torch.stack(conds, dim=1) if self.average_conditioning_embeddings: conds = conds.mean(dim=1).unsqueeze(1) else: # already computed conds = speech_conditioning_input.unsqueeze(1) # Build input and target tensors # Prepend start token to inputs and append stop token to targets text_inputs, _ = self.set_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) audio_codes, _ = self.set_inputs_and_targets(audio_codes, self.start_mel_token, self.stop_mel_token) # Set attn_mask attn_mask_text = None attn_mask_mel = None if not return_latent: attn_mask_text = torch.ones( text_inputs.shape[0], text_inputs.shape[1], dtype=torch.bool, device=text_inputs.device, ) attn_mask_mel = torch.ones( audio_codes.shape[0], audio_codes.shape[1], dtype=torch.bool, device=audio_codes.device, ) for idx, l in enumerate(text_lengths): attn_mask_text[idx, l + 1 :] = 0.0 for idx, l in enumerate(mel_lengths): attn_mask_mel[idx, l + 1 :] = 0.0 # Compute text embeddings + positional embeddings # print(" > text input latent:", text_inputs) text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) # Compute mel embeddings + positional embeddings audio_emb = self.audio_embedding(audio_codes) + self.audio_embedding(audio_codes) # Compute prompt embeddings + positional embeddings prompt = self.get_prompts(prompt_codes) # prompt_emb = self.audio_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach() prompt_emb = self.prompt_embedding(prompt) + self.prompt_pos_embedding(prompt) # dropout prompt embeddings prompt_emb = F.dropout(prompt_emb, p=0.1, training=self.training) # Get logits sub = -4 # don't ask me why 😄 if self.training: sub = -1 _, audio_logits = self.get_logits( conds, text_emb, self.text_head, audio_emb, self.mel_head, prompt=prompt_emb, get_attns=return_attentions, return_latent=return_latent, attn_mask_text=attn_mask_text, attn_mask_mel=attn_mask_mel, ) return audio_logits[:, :sub] # sub to prevent bla. def compute_embeddings( self, speech_conditioning_latent, text_inputs, input_tokens=None, prompt_codes=None, pad_input_text=False, ): """Compute all the embeddings needed for inference.""" if pad_input_text and text_inputs.shape[1] < 250: text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) else: text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) print(" > Text inputs:", text_inputs) if prompt_codes is not None: prompt_codes = self.get_prompts(prompt_codes) # prompt_emb = self.audio_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes) prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes) print(" > Prompt inputs:", prompt_codes) print(" > Prompt inputs shape:", prompt_codes.shape) emb = torch.cat([prompt_emb, emb], dim=1) if speech_conditioning_latent is not None: conds = speech_conditioning_latent.unsqueeze(1) emb = torch.cat([conds, emb], dim=1) self.inference_model.store_prefix_emb(emb) fake_inputs = torch.full( ( emb.shape[0], emb.shape[1] + 1, # +1 for the start_mel_token ), fill_value=1, dtype=torch.long, device=text_inputs.device, ) fake_inputs[:, -1] = self.start_mel_token if input_tokens is not None: fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) return fake_inputs def inference( self, text_inputs, input_tokens=None, prompt_codes=None, pad_input_text=False, **hf_generate_kwargs, ): if pad_input_text and text_inputs.shape[1] < 250: text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) else: text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) if prompt_codes is not None: prompt_codes = self.get_prompts(prompt_codes) prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes) emb = torch.cat([prompt_emb, emb], dim=1) self.inference_model.store_prefix_emb(emb) fake_inputs = torch.full( ( emb.shape[0], emb.shape[1] + 1, # +1 for the start_mel_token ), fill_value=1, dtype=torch.long, device=text_inputs.device, ) fake_inputs[:, -1] = self.start_mel_token if input_tokens is not None: fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) gen = self.inference_model.generate( fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token, max_length=self.max_audio_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, **hf_generate_kwargs, ) if "return_dict_in_generate" in hf_generate_kwargs: return gen.sequences[:, fake_inputs.shape[1] :], gen return gen[:, fake_inputs.shape[1] :]