import pandas as pd import os import numpy as np import collections from torch.utils.data import Dataset import train_config as c from Tacotron.utils.text import text_to_sequence from Tacotron.utils.audio import * from Tacotron.utils.data import prepare_data, pad_data, pad_per_step class LJSpeechDataset(Dataset): def __init__(self, csv_file, root_dir, outputs_per_step): self.frames = pd.read_csv(csv_file, sep='|', header=None) self.root_dir = root_dir self.outputs_per_step = outputs_per_step print(" > Reading LJSpeech from - {}".format(root_dir)) print(" | > Number of instances : {}".format(len(self.frames))) def load_wav(self, filename): try: audio = librosa.load(filename, sr=c.sample_rate) return audio except RuntimeError as e: print(" !! Cannot read file : {}".format(filename)) def __len__(self): return len(self.frames) def __getitem__(self, idx): wav_name = os.path.join(self.root_dir, self.frames.ix[idx, 0]) + '.wav' text = self.frames.ix[idx, 1] text = np.asarray(text_to_sequence(text, [c.cleaners]), dtype=np.int32) wav = np.asarray(self.load_wav(wav_name)[0], dtype=np.float32) sample = {'text': text, 'wav': wav} return sample def collate_fn(self, batch): # Puts each data field into a tensor with outer dimension batch size if isinstance(batch[0], collections.Mapping): keys = list() text = [d['text'] for d in batch] wav = [d['wav'] for d in batch] # PAD sequences with largest length of the batch text = prepare_data(text).astype(np.int32) wav = prepare_data(wav) magnitude = np.array([spectrogram(w) for w in wav]) mel = np.array([melspectrogram(w) for w in wav]) timesteps = mel.shape[2] # PAD with zeros that can be divided by outputs per step if timesteps % self.outputs_per_step != 0: magnitude = pad_per_step(magnitude, self.outputs_per_step) mel = pad_per_step(mel, self.outputs_per_step) # reshape jombo magnitude = magnitude.transpose(0, 2, 1) mel = mel.transpose(0, 2, 1) return text, magnitude, mel raise TypeError(("batch must contain tensors, numbers, dicts or lists;\ found {}" .format(type(batch[0]))))