# adapted from https://github.com/patriceguyot/Yin import numpy as np def differenceFunction(x, N, tau_max): """ Compute difference function of data x. This corresponds to equation (6) in [1] This solution is implemented directly with Numpy fft. :param x: audio data :param N: length of data :param tau_max: integration window size :return: difference function :rtype: list """ x = np.array(x, np.float64) w = x.size tau_max = min(tau_max, w) x_cumsum = np.concatenate((np.array([0.0]), (x * x).cumsum())) size = w + tau_max p2 = (size // 32).bit_length() nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32) size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size) fc = np.fft.rfft(x, size_pad) conv = np.fft.irfft(fc * fc.conjugate())[:tau_max] return x_cumsum[w : w - tau_max : -1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv def cumulativeMeanNormalizedDifferenceFunction(df, N): """ Compute cumulative mean normalized difference function (CMND). This corresponds to equation (8) in [1] :param df: Difference function :param N: length of data :return: cumulative mean normalized difference function :rtype: list """ cmndf = df[1:] * range(1, N) / np.cumsum(df[1:]).astype(float) # scipy method return np.insert(cmndf, 0, 1) def getPitch(cmdf, tau_min, tau_max, harmo_th=0.1): """ Return fundamental period of a frame based on CMND function. :param cmdf: Cumulative Mean Normalized Difference function :param tau_min: minimum period for speech :param tau_max: maximum period for speech :param harmo_th: harmonicity threshold to determine if it is necessary to compute pitch frequency :return: fundamental period if there is values under threshold, 0 otherwise :rtype: float """ tau = tau_min while tau < tau_max: if cmdf[tau] < harmo_th: while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]: tau += 1 return tau tau += 1 return 0 # if unvoiced def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500, harmo_thresh=0.1): """ Compute the Yin Algorithm. Return fundamental frequency and harmonic rate. :param sig: Audio signal (list of float) :param sr: sampling rate (int) :param w_len: size of the analysis window (samples) :param w_step: size of the lag between two consecutives windows (samples) :param f0_min: Minimum fundamental frequency that can be detected (hertz) :param f0_max: Maximum fundamental frequency that can be detected (hertz) :param harmo_tresh: Threshold of detection. The yalgorithmù return the first minimum of the CMND function below this treshold. :returns: * pitches: list of fundamental frequencies, * harmonic_rates: list of harmonic rate values for each fundamental frequency value (= confidence value) * argmins: minimums of the Cumulative Mean Normalized DifferenceFunction * times: list of time of each estimation :rtype: tuple """ tau_min = int(sr / f0_max) tau_max = int(sr / f0_min) timeScale = range(0, len(sig) - w_len, w_step) # time values for each analysis window times = [t / float(sr) for t in timeScale] frames = [sig[t : t + w_len] for t in timeScale] pitches = [0.0] * len(timeScale) harmonic_rates = [0.0] * len(timeScale) argmins = [0.0] * len(timeScale) for i, frame in enumerate(frames): # Compute YIN df = differenceFunction(frame, w_len, tau_max) cmdf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max) p = getPitch(cmdf, tau_min, tau_max, harmo_thresh) # Get results if np.argmin(cmdf) > tau_min: argmins[i] = float(sr / np.argmin(cmdf)) if p != 0: # A pitch was found pitches[i] = float(sr / p) harmonic_rates[i] = cmdf[p] else: # No pitch, but we compute a value of the harmonic rate harmonic_rates[i] = min(cmdf) return pitches, harmonic_rates, argmins, times