import torch
from torch.nn import functional
from torch import nn


# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def _sequence_mask(sequence_length, max_len=None):
    if max_len is None:
        max_len = sequence_length.data.max()
    batch_size = sequence_length.size(0)
    seq_range = torch.arange(0, max_len).long()
    seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
    if sequence_length.is_cuda:
        seq_range_expand = seq_range_expand.cuda()
    seq_length_expand = (sequence_length.unsqueeze(1)
                         .expand_as(seq_range_expand))
    return seq_range_expand < seq_length_expand


class L1LossMasked(nn.Module):

    def __init__(self):
        super(L1LossMasked, self).__init__()

    def forward(self, input, target, length):
        """
        Args:
            input: A Variable containing a FloatTensor of size
                (batch, max_len, dim) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len, dim) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Returns:
            loss: An average loss value masked by the length.
        """
        input = input.contiguous()
        target = target.contiguous()

        # logits_flat: (batch * max_len, dim)
        input = input.view(-1, input.shape[-1])
        # target_flat: (batch * max_len, dim)
        target_flat = target.view(-1, target.shape[-1])
        # losses_flat: (batch * max_len, dim)
        losses_flat = functional.l1_loss(input, target_flat, size_average=False,
                                         reduce=False)
        # losses: (batch, max_len, dim)
        losses = losses_flat.view(*target.size())
        # mask: (batch, max_len, 1)
        mask = _sequence_mask(sequence_length=length,
                              max_len=target.size(1)).unsqueeze(2)
        losses = losses * mask.float()
        loss = losses.sum() / (length.float().sum() * float(target.shape[2]))
        return loss