from torch import nn class ResStack(nn.Module): def __init__(self, kernel, channel, padding, dilations = [1, 3, 5]): super(ResStack, self).__init__() resstack = [] for dilation in dilations: resstack += [ nn.LeakyReLU(0.2), nn.ReflectionPad1d(dilation), nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=kernel, dilation=dilation)), nn.LeakyReLU(0.2), nn.ReflectionPad1d(padding), nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)), ] self.resstack = nn.Sequential(*resstack) self.shortcut = nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)) def forward(self, x): x1 = self.shortcut(x) x2 = self.resstack(x) return x1 + x2 def remove_weight_norm(self): # nn.utils.remove_weight_norm(self.resstack[2]) # nn.utils.remove_weight_norm(self.resstack[4]) for idx, layer in enumerate(self.resstack): if len(layer.state_dict()) != 0: try: nn.utils.remove_weight_norm(layer) except: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.shortcut) class MRF(nn.Module): def __init__(self, kernels, channel, dilations = [[1,1], [3,1], [5,1]]): super(MRF, self).__init__() self.resblock1 = ResStack(kernels[0], channel, 0) self.resblock2 = ResStack(kernels[1], channel, 6) self.resblock3 = ResStack(kernels[2], channel, 12) def forward(self, x): x1 = self.resblock1(x) x2 = self.resblock2(x) x3 = self.resblock3(x) return x1 + x2 + x3 def remove_weight_norm(self): self.resblock1.remove_weight_norm() self.resblock2.remove_weight_norm() self.resblock3.remove_weight_norm()