from torch import nn import torch.nn.functional as F from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator class PeriodDiscriminator(nn.Module): def __init__(self, period): super(PeriodDiscriminator, self).__init__() self.period = period self.discriminator = nn.ModuleList([ nn.Sequential( nn.utils.weight_norm(nn.Conv2d(1, 64, kernel_size=(5, 1), stride=(3, 1))), nn.LeakyReLU(0.2, inplace=True), ), nn.Sequential( nn.utils.weight_norm(nn.Conv2d(64, 128, kernel_size=(5, 1), stride=(3, 1))), nn.LeakyReLU(0.2, inplace=True), ), nn.Sequential( nn.utils.weight_norm(nn.Conv2d(128, 256, kernel_size=(5, 1), stride=(3, 1))), nn.LeakyReLU(0.2, inplace=True), ), nn.Sequential( nn.utils.weight_norm(nn.Conv2d(256, 512, kernel_size=(5, 1), stride=(3, 1))), nn.LeakyReLU(0.2, inplace=True), ), nn.Sequential( nn.utils.weight_norm(nn.Conv2d(512, 1024, kernel_size=(5, 1))), nn.LeakyReLU(0.2, inplace=True), ), nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))), ]) def forward(self, x): batch_size = x.shape[0] pad = self.period - (x.shape[-1] % self.period) x = F.pad(x, (0, pad), "reflect") y = x.view(batch_size, -1, self.period).contiguous() y = y.unsqueeze(1) features = list() for module in self.discriminator: y = module(y) features.append(y) return features[-1], features[:-1] class HiFiDiscriminator(nn.Module): def __init__(self, periods=[2, 3, 5, 7, 11]): super(HiFiDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ PeriodDiscriminator(periods[0]), PeriodDiscriminator(periods[1]), PeriodDiscriminator(periods[2]), PeriodDiscriminator(periods[3]), PeriodDiscriminator(periods[4]), ]) self.msd = MelganMultiscaleDiscriminator() def forward(self, x): scores, feats = self.msd(x) for key, disc in enumerate(self.discriminators): score, feat = disc(x) scores.append(score) feats.append(feat) return scores, feats