{ "model_name": "TTS-dev-tweb", "model_description": "Higher dropout rate for stopnet and disabled custom initialization, pull current mel prediction to stopnet.", "audio":{ "audio_processor": "audio", // to use dictate different audio processors, if available. // Audio processing parameters "num_mels": 80, // size of the mel spec frame. "num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame. "sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled. "frame_length_ms": 50, // stft window length in ms. "frame_shift_ms": 12.5, // stft window hop-lengh in ms. "preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "min_level_db": -100, // normalization range "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. "power": 1.5, // value to sharpen wav signals after GL algorithm. "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // Normalization parameters "signal_norm": true, // normalize the spec values in range [0, 1] "symmetric_norm": false, // move normalization to range [-1, 1] "max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!! "do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) }, "embedding_size": 256, "text_cleaner": "english_cleaners", "epochs": 1000, "lr": 0.001, "lr_decay": false, "warmup_steps": 4000, "batch_size": 20, "eval_batch_size":32, "r": 5, "wd": 0.000001, "checkpoint": true, "save_step": 5000, "print_step": 10, "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "run_eval": true, "data_path": "../../Data/LJSpeech-1.1/", // can overwritten from command argument "meta_file_train": "transcript.txt", // metafile for training dataloader. "meta_file_val": "", // metafile for evaluation dataloader. "dataset": "tweb", // one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py "min_seq_len": 0, // minimum text length to use in training "max_seq_len": 300, // maximum text length "output_path": "../keep/", // output path for all training outputs. "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4 // number of evaluation data loader processes. }