import numpy as np def pad_data(x, length): _pad = 0 return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad) def prepare_data(inputs): max_len = max((len(x) for x in inputs)) return np.stack([pad_data(x, max_len) for x in inputs]) def pad_per_step(inputs, outputs_per_step): timesteps = inputs.shape[-1] return np.pad(inputs, [[0, 0], [0, 0], [0, outputs_per_step - (timesteps % outputs_per_step)]], mode='constant', constant_values=0.0)