from dataclasses import dataclass, field from .shared_configs import BaseGANVocoderConfig @dataclass class MelganConfig(BaseGANVocoderConfig): """Defines parameters for MelGAN vocoder.""" model: str = "melgan" # Model specific params discriminator_model: str = "melgan_multiscale_discriminator" discriminator_model_params: dict = field( default_factory=lambda: {"base_channels": 16, "max_channels": 1024, "downsample_factors": [4, 4, 4, 4]} ) generator_model: str = "melgan_generator" generator_model_params: dict = field( default_factory=lambda: {"upsample_factors": [8, 8, 2, 2], "num_res_blocks": 3} ) # Training - overrides batch_size: int = 16 seq_len: int = 8192 pad_short: int = 2000 use_noise_augment: bool = True use_cache: bool = True # LOSS PARAMETERS - overrides use_stft_loss: bool = True use_subband_stft_loss: bool = False use_mse_gan_loss: bool = True use_hinge_gan_loss: bool = False use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN) use_l1_spec_loss: bool = False stft_loss_params: dict = field( default_factory=lambda: { "n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240], } ) # loss weights - overrides stft_loss_weight: float = 0.5 subband_stft_loss_weight: float = 0 mse_G_loss_weight: float = 2.5 hinge_G_loss_weight: float = 0 feat_match_loss_weight: float = 108 l1_spec_loss_weight: float = 0