from dataclasses import dataclass, field from .shared_configs import BaseGANVocoderConfig @dataclass class ParallelWaveganConfig(BaseGANVocoderConfig): """Defines parameters for ParallelWavegan vocoder.""" model: str = "parallel_wavegan" # Model specific params discriminator_model: str = "parallel_wavegan_discriminator" discriminator_model_params: dict = field(default_factory=lambda: {"num_layers": 10}) generator_model: str = "parallel_wavegan_generator" generator_model_params: dict = field( default_factory=lambda: {"upsample_factors": [4, 4, 4, 4], "stacks": 3, "num_res_blocks": 30} ) # Training - overrides batch_size: int = 6 seq_len: int = 25600 pad_short: int = 2000 use_noise_augment: bool = False use_cache: bool = True steps_to_start_discriminator: int = 200000 # LOSS PARAMETERS - overrides use_stft_loss: bool = True use_subband_stft_loss: bool = False use_mse_gan_loss: bool = True use_hinge_gan_loss: bool = False use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and HifiGAN) use_l1_spec_loss: bool = False stft_loss_params: dict = field( default_factory=lambda: { "n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240], } ) # loss weights - overrides stft_loss_weight: float = 0.5 subband_stft_loss_weight: float = 0 mse_G_loss_weight: float = 2.5 hinge_G_loss_weight: float = 0 feat_match_loss_weight: float = 0 l1_spec_loss_weight: float = 0 # optimizer overrides lr_gen: float = 0.0002 # Initial learning rate. lr_disc: float = 0.0002 # Initial learning rate. optimizer: str = "AdamW" optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) lr_scheduler_gen: str = "ExponentialLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) lr_scheduler_disc: str = "ExponentialLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})