import os import torch import datetime def load_checkpoint(model, checkpoint_path, use_cuda=False): state = torch.load(checkpoint_path, map_location=torch.device('cpu')) model.load_state_dict(state['model']) if amp and 'amp' in state: amp.load_state_dict(state['amp']) if use_cuda: model.cuda() # set model stepsize if 'r' in state.keys(): model.decoder.set_r(state['r']) return model, state def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_dict=None, **kwargs): new_state_dict = model.state_dict() state = { 'model': new_state_dict, 'optimizer': optimizer.state_dict() if optimizer is not None else None, 'step': current_step, 'epoch': epoch, 'date': datetime.date.today().strftime("%B %d, %Y"), 'r': r } if amp_state_dict: state['amp'] = amp_state_dict state.update(kwargs) torch.save(state, output_path) def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs): file_name = 'checkpoint_{}.pth.tar'.format(current_step) checkpoint_path = os.path.join(output_folder, file_name) print(" > CHECKPOINT : {}".format(checkpoint_path)) save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs) def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs): if target_loss < best_loss: file_name = 'best_model.pth.tar' checkpoint_path = os.path.join(output_folder, file_name) print(" > BEST MODEL : {}".format(checkpoint_path)) save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs) best_loss = target_loss return best_loss