import os
import numpy as np
import collections
import librosa
import torch
import random
from torch.utils.data import Dataset

from utils.text import text_to_sequence, phoneme_to_sequence
from utils.data import (prepare_data, pad_per_step, prepare_tensor,
                        prepare_stop_target)


class MyDataset(Dataset):
    def __init__(self,
                 root_path,
                 meta_file,
                 outputs_per_step,
                 text_cleaner,
                 ap,
                 preprocessor,
                 batch_group_size=0,
                 min_seq_len=0,
                 max_seq_len=float("inf"),
                 cached=False,
                 use_phonemes=True,
                 phoneme_cache_path=None,
                 phoneme_language="en-us",
                 enable_eos_bos=False,
                 verbose=False):
        """
        Args:
            root_path (str): root path for the data folder.
            meta_file (str): name for dataset file including audio transcripts 
                and file names (or paths in cached mode).
            outputs_per_step (int): number of time frames predicted per step.
            text_cleaner (str): text cleaner used for the dataset.
            ap (TTS.utils.AudioProcessor): audio processor object.
            preprocessor (dataset.preprocess.Class): preprocessor for the dataset. 
                Create your own if you need to run a new dataset.
            batch_group_size (int): (0) range of batch randomization after sorting 
                sequences by length. 
            min_seq_len (int): (0) minimum sequence length to be processed 
                by the loader.
            max_seq_len (int): (float("inf")) maximum sequence length.
            cached (bool): (false) true if the given data path is created 
                by extract_features.py.
            use_phonemes (bool): (true) if true, text converted to phonemes.
            phoneme_cache_path (str): path to cache phoneme features. 
            phoneme_language (str): one the languages from 
                https://github.com/bootphon/phonemizer#languages
            enable_eos_bos (bool): enable end of sentence and beginning of sentences characters.
            verbose (bool): print diagnostic information.
        """
        self.root_path = root_path
        self.batch_group_size = batch_group_size
        self.items = preprocessor(root_path, meta_file)
        self.outputs_per_step = outputs_per_step
        self.sample_rate = ap.sample_rate
        self.cleaners = text_cleaner
        self.min_seq_len = min_seq_len
        self.max_seq_len = max_seq_len
        self.ap = ap
        self.cached = cached
        self.use_phonemes = use_phonemes
        self.phoneme_cache_path = phoneme_cache_path
        self.phoneme_language = phoneme_language
        self.enable_eos_bos = enable_eos_bos
        self.verbose = verbose
        if use_phonemes and not os.path.isdir(phoneme_cache_path):
            os.makedirs(phoneme_cache_path, exist_ok=True)
        if self.verbose:
            print("\n > DataLoader initialization")
            print(" | > Data path: {}".format(root_path))
            print(" | > Use phonemes: {}".format(self.use_phonemes))
            if use_phonemes:
                print("   | > phoneme language: {}".format(phoneme_language))
            print(" | > Cached dataset: {}".format(self.cached))
            print(" | > Number of instances : {}".format(len(self.items)))
        self.sort_items()

    def load_wav(self, filename):
        try:
            audio = self.ap.load_wav(filename)
            return audio
        except:
            print(" !! Cannot read file : {}".format(filename))

    def load_np(self, filename):
        data = np.load(filename).astype('float32')
        return data

    def load_phoneme_sequence(self, wav_file, text):
        file_name = os.path.basename(wav_file).split('.')[0]
        tmp_path = os.path.join(self.phoneme_cache_path,
                                file_name + '_phoneme.npy')
        if os.path.isfile(tmp_path):
            try:
                text = np.load(tmp_path)
            except:
                print(" > ERROR: phoneme connot be loaded for {}. Recomputing.".format(wav_file))
                text = np.asarray(
                    phoneme_to_sequence(
                        text, [self.cleaners], language=self.phoneme_language, enable_eos_bos=self.enable_eos_bos),
                    dtype=np.int32)
                np.save(tmp_path, text)
        else:
            text = np.asarray(
                phoneme_to_sequence(
                    text, [self.cleaners], language=self.phoneme_language, enable_eos_bos=self.enable_eos_bos),
                dtype=np.int32)
            np.save(tmp_path, text)
        return text

    def load_data(self, idx):
        if self.cached:
            wav_name = self.items[idx][1]
            mel_name = self.items[idx][2]
            linear_name = self.items[idx][3]
            text = self.items[idx][0]

            if wav_name.split('.')[-1] == 'npy':
                wav = self.load_np(wav_name)
            else:
                wav = np.asarray(self.load_wav(wav_name), dtype=np.float32)
            mel = self.load_np(mel_name)
            linear = self.load_np(linear_name)
        else:
            text, wav_file = self.items[idx]
            wav = np.asarray(self.load_wav(wav_file), dtype=np.float32)
            mel = None
            linear = None

        if self.use_phonemes:
            text = self.load_phoneme_sequence(wav_file, text)
        else:
            text = np.asarray(
                text_to_sequence(text, [self.cleaners]), dtype=np.int32)

        assert text.size > 0, self.items[idx][1]
        assert wav.size > 0, self.items[idx][1]

        sample = {
            'text': text,
            'wav': wav,
            'item_idx': self.items[idx][1],
            'mel': mel,
            'linear': linear
        }
        return sample

    def sort_items(self):
        r"""Sort instances based on text length in ascending order"""
        lengths = np.array([len(ins[0]) for ins in self.items])
       
        idxs = np.argsort(lengths)
        new_items = []
        ignored = []
        for i, idx in enumerate(idxs):
            length = lengths[idx]
            if length < self.min_seq_len or length > self.max_seq_len:
                ignored.append(idx)
            else:
                new_items.append(self.items[idx])
        # shuffle batch groups
        if self.batch_group_size > 0:
            for i in range(len(new_items) // self.batch_group_size):
                offset = i * self.batch_group_size
                end_offset = offset + self.batch_group_size
                temp_items = new_items[offset:end_offset]
                random.shuffle(temp_items)
                new_items[offset:end_offset] = temp_items
        self.items = new_items

        if self.verbose:
            print(" | > Max length sequence: {}".format(np.max(lengths)))
            print(" | > Min length sequence: {}".format(np.min(lengths)))
            print(" | > Avg length sequence: {}".format(np.mean(lengths)))
            print(" | > Num. instances discarded by max-min seq limits: {}".format(
                len(ignored), self.min_seq_len))
            print(" | > Batch group size: {}.".format(self.batch_group_size))
        
    def __len__(self):
        return len(self.items)

    def __getitem__(self, idx):
        return self.load_data(idx)

    def collate_fn(self, batch):
        r"""
            Perform preprocessing and create a final data batch:
            1. PAD sequences with the longest sequence in the batch
            2. Convert Audio signal to Spectrograms.
            3. PAD sequences that can be divided by r.
            4. Convert Numpy to Torch tensors.
        """

        # Puts each data field into a tensor with outer dimension batch size
        if isinstance(batch[0], collections.Mapping):

            text_lenghts = np.array([len(d["text"]) for d in batch])
            text_lenghts, ids_sorted_decreasing = torch.sort(
                torch.LongTensor(text_lenghts), dim=0, descending=True)

            wav = [batch[idx]['wav'] for idx in ids_sorted_decreasing]
            item_idxs = [
                batch[idx]['item_idx'] for idx in ids_sorted_decreasing
            ]
            text = [batch[idx]['text'] for idx in ids_sorted_decreasing]

            # if specs are not computed, compute them.
            if batch[0]['mel'] is None and batch[0]['linear'] is None:
                mel = [
                    self.ap.melspectrogram(w).astype('float32') for w in wav
                ]
                linear = [
                    self.ap.spectrogram(w).astype('float32') for w in wav
                ]
            else:
                mel = [d['mel'] for d in batch]
                linear = [d['linear'] for d in batch]
            mel_lengths = [m.shape[1] + 1 for m in mel]  # +1 for zero-frame

            # compute 'stop token' targets
            stop_targets = [
                np.array([0.] * (mel_len - 1)) for mel_len in mel_lengths
            ]

            # PAD stop targets
            stop_targets = prepare_stop_target(stop_targets,
                                               self.outputs_per_step)

            # PAD sequences with largest length of the batch
            text = prepare_data(text).astype(np.int32)
            wav = prepare_data(wav)

            # PAD features with largest length + a zero frame
            linear = prepare_tensor(linear, self.outputs_per_step)
            mel = prepare_tensor(mel, self.outputs_per_step)
            assert mel.shape[2] == linear.shape[2]
            timesteps = mel.shape[2]

            # B x T x D
            linear = linear.transpose(0, 2, 1)
            mel = mel.transpose(0, 2, 1)

            # convert things to pytorch
            text_lenghts = torch.LongTensor(text_lenghts)
            text = torch.LongTensor(text)
            linear = torch.FloatTensor(linear).contiguous()
            mel = torch.FloatTensor(mel).contiguous()
            mel_lengths = torch.LongTensor(mel_lengths)
            stop_targets = torch.FloatTensor(stop_targets)

            return text, text_lenghts, linear, mel, mel_lengths, stop_targets, item_idxs

        raise TypeError(("batch must contain tensors, numbers, dicts or lists;\
                         found {}".format(type(batch[0]))))