import logging import torch import torch.utils.data from librosa.filters import mel as librosa_mel_fn from TTS.utils.audio.torch_transforms import amp_to_db logger = logging.getLogger(__name__) MAX_WAV_VALUE = 32768.0 mel_basis = {} hann_window = {} def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.0: logger.info("Min value is: %.3f", torch.min(y)) if torch.max(y) > 1.0: logger.info("Max value is: %.3f", torch.max(y)) global mel_basis, hann_window dtype_device = str(y.dtype) + "_" + str(y.device) fmax_dtype_device = str(fmax) + "_" + dtype_device wnsize_dtype_device = str(win_size) + "_" + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" ) y = y.squeeze(1) spec = torch.view_as_real( torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) ) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) spec = torch.matmul(mel_basis[fmax_dtype_device], spec) spec = amp_to_db(spec) return spec