import os

from trainer import Trainer, TrainerArgs

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.delightful_tts import DelightfulTTS, DelightfulTtsArgs, VocoderConfig
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio.processor import AudioProcessor

data_path = ""
output_path = os.path.dirname(os.path.abspath(__file__))

dataset_config = BaseDatasetConfig(
    dataset_name="ljspeech", formatter="ljspeech", meta_file_train="metadata.csv", path=data_path
)

audio_config = DelightfulTtsAudioConfig()
model_args = DelightfulTtsArgs()

vocoder_config = VocoderConfig()

delightful_tts_config = DelightfulTTSConfig(
    run_name="delightful_tts_ljspeech",
    run_description="Train like in delightful tts paper.",
    model_args=model_args,
    audio=audio_config,
    vocoder=vocoder_config,
    batch_size=32,
    eval_batch_size=16,
    num_loader_workers=10,
    num_eval_loader_workers=10,
    precompute_num_workers=10,
    batch_group_size=2,
    compute_input_seq_cache=True,
    compute_f0=True,
    f0_cache_path=os.path.join(output_path, "f0_cache"),
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1000,
    text_cleaner="english_cleaners",
    use_phonemes=True,
    phoneme_language="en-us",
    phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
    print_step=50,
    print_eval=False,
    mixed_precision=True,
    output_path=output_path,
    datasets=[dataset_config],
    start_by_longest=False,
    eval_split_size=0.1,
    binary_align_loss_alpha=0.0,
    use_attn_priors=False,
    lr_gen=4e-1,
    lr=4e-1,
    lr_disc=4e-1,
    max_text_len=130,
)

tokenizer, config = TTSTokenizer.init_from_config(delightful_tts_config)

ap = AudioProcessor.init_from_config(config)


train_samples, eval_samples = load_tts_samples(
    dataset_config,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)

model = DelightfulTTS(ap=ap, config=config, tokenizer=tokenizer, speaker_manager=None)

trainer = Trainer(
    TrainerArgs(),
    config,
    output_path,
    model=model,
    train_samples=train_samples,
    eval_samples=eval_samples,
)

trainer.fit()