import os import unittest import numpy as np import torch as T from tests import get_tests_path, get_tests_input_path, get_tests_output_path from utils.audio import AudioProcessor from utils.generic_utils import load_config TESTS_PATH = get_tests_path() OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") os.makedirs(OUT_PATH, exist_ok=True) conf = load_config(os.path.join(TESTS_PATH, 'test_config.json')) class TestAudio(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestAudio, self).__init__(*args, **kwargs) self.ap = AudioProcessor(**conf.audio) def test_audio_synthesis(self): """ 1. load wav 2. set normalization parameters 3. extract mel-spec 4. invert to wav and save the output """ print(" > Sanity check for the process wav -> mel -> wav") def _test(max_norm, signal_norm, symmetric_norm, clip_norm): self.ap.max_norm = max_norm self.ap.signal_norm = signal_norm self.ap.symmetric_norm = symmetric_norm self.ap.clip_norm = clip_norm wav = self.ap.load_wav(WAV_FILE) mel = self.ap.melspectrogram(wav) wav_ = self.ap.inv_mel_spectrogram(mel) file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\ .format(max_norm, signal_norm, symmetric_norm, clip_norm) print(" | > Creating wav file at : ", file_name) self.ap.save_wav(wav_, OUT_PATH + file_name) # maxnorm = 1.0 _test(1., False, False, False) _test(1., True, False, False) _test(1., True, True, False) _test(1., True, False, True) _test(1., True, True, True) # maxnorm = 4.0 _test(4., False, False, False) _test(4., True, False, False) _test(4., True, True, False) _test(4., True, False, True) _test(4., True, True, True) def test_normalize(self): """Check normalization and denormalization for range values and consistency """ print(" > Testing normalization and denormalization.") wav = self.ap.load_wav(WAV_FILE) self.ap.signal_norm = False x = self.ap.melspectrogram(wav) x_old = x self.ap.signal_norm = True self.ap.symmetric_norm = False self.ap.clip_norm = False self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(x_norm.max(), " -- ", x_norm.min()) assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() assert x_norm.min() >= 0 - 1, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = False self.ap.clip_norm = True self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(x_norm.max(), " -- ", x_norm.min()) assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= 0, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = True self.ap.clip_norm = False self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(x_norm.max(), " -- ", x_norm.min()) assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min() assert x_norm.min() <= 0, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = True self.ap.clip_norm = True self.ap.max_norm = 4.0 x_norm = self.ap._normalize(x) print(x_norm.max(), " -- ", x_norm.min()) assert (x_old - x).sum() == 0 # check value range assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= -self.ap.max_norm, x_norm.min() assert x_norm.min() <= 0, x_norm.min() # check denorm. x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3, (x - x_).mean() self.ap.signal_norm = True self.ap.symmetric_norm = False self.ap.max_norm = 1.0 x_norm = self.ap._normalize(x) print(x_norm.max(), " -- ", x_norm.min()) assert (x_old - x).sum() == 0 assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= 0, x_norm.min() x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3 self.ap.signal_norm = True self.ap.symmetric_norm = True self.ap.max_norm = 1.0 x_norm = self.ap._normalize(x) print(x_norm.max(), " -- ", x_norm.min()) assert (x_old - x).sum() == 0 assert x_norm.max() <= self.ap.max_norm, x_norm.max() assert x_norm.min() >= -self.ap.max_norm, x_norm.min() assert x_norm.min() < 0, x_norm.min() x_ = self.ap._denormalize(x_norm) assert (x - x_).sum() < 1e-3