import os from TTS.config.shared_configs import BaseAudioConfig from TTS.trainer import Trainer, TrainingArgs from TTS.tts.configs.glow_tts_config import GlowTTSConfig from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.glow_tts import GlowTTS from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.audio import AudioProcessor # set experiment paths output_path = os.path.dirname(os.path.abspath(__file__)) dataset_path = os.path.join(output_path, "../VCTK/") # download the dataset if not downloaded if not os.path.exists(dataset_path): from TTS.utils.downloaders import download_vctk download_vctk(dataset_path) # define dataset config dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=dataset_path) # define audio config # ❗ resample the dataset externally using `TTS/bin/resample.py` and set `resample=False` for faster training audio_config = BaseAudioConfig(sample_rate=22050, resample=True, do_trim_silence=True, trim_db=23.0) # define model config config = GlowTTSConfig( batch_size=64, eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=25, print_eval=False, mixed_precision=True, output_path=output_path, datasets=[dataset_config], use_speaker_embedding=True, ) # init audio processor ap = AudioProcessor(**config.audio.to_dict()) # load training samples train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) # init speaker manager for multi-speaker training # it maps speaker-id to speaker-name in the model and data-loader speaker_manager = SpeakerManager() speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples) config.num_speakers = speaker_manager.num_speakers # init model model = GlowTTS(config, speaker_manager) # init the trainer and 🚀 trainer = Trainer( TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, ) trainer.fit()