import io import time import librosa import torch import numpy as np from .text import text_to_sequence, phoneme_to_sequence, sequence_to_phoneme from .visual import visualize from matplotlib import pylab as plt def synthesis(m, s, CONFIG, use_cuda, ap): text_cleaner = [CONFIG.text_cleaner] if CONFIG.use_phonemes: seq = np.asarray( phoneme_to_sequence(s, text_cleaner, CONFIG.phoneme_language), dtype=np.int32) else: seq = np.asarray(text_to_sequence(s, text_cleaner), dtype=np.int32) chars_var = torch.from_numpy(seq).unsqueeze(0) if use_cuda: chars_var = chars_var.cuda() decoder_output, postnet_output, alignments, stop_tokens = m.inference( chars_var.long()) postnet_output = postnet_output[0].data.cpu().numpy() decoder_output = decoder_output[0].data.cpu().numpy() alignment = alignments[0].cpu().data.numpy() if CONFIG.model == "Tacotron": wav = ap.inv_spectrogram(postnet_output.T) else: wav = ap.inv_mel_spectrogram(postnet_output.T) wav = wav[:ap.find_endpoint(wav)] return wav, alignment, decoder_output, postnet_output, stop_tokens