{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This is to test TTS models with benchmark sentences for speech synthesis.\n", "\n", "Before running this script please DON'T FORGET: \n", "- to set file paths.\n", "- to download related model files from TTS and WaveRNN.\n", "- to checkout right commit versions (given next to the model) of TTS and WaveRNN.\n", "- to set the right paths in the cell below.\n", "\n", "Repositories:\n", "- TTS: https://github.com/mozilla/TTS\n", "- WaveRNN: https://github.com/erogol/WaveRNN" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "TTS_PATH = \"/home/erogol/projects/\"\n", "WAVERNN_PATH =\"/home/erogol/projects/\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "import sys\n", "import io\n", "import torch \n", "import time\n", "import json\n", "import numpy as np\n", "from collections import OrderedDict\n", "from matplotlib import pylab as plt\n", "\n", "%pylab inline\n", "rcParams[\"figure.figsize\"] = (16,5)\n", "\n", "# add libraries into environment\n", "sys.path.append(TTS_PATH) # set this if TTS is not installed globally\n", "sys.path.append(WAVERNN_PATH) # set this if TTS is not installed globally\n", "\n", "import librosa\n", "import librosa.display\n", "\n", "from TTS.models.tacotron import Tacotron \n", "from TTS.layers import *\n", "from TTS.utils.data import *\n", "from TTS.utils.audio import AudioProcessor\n", "from TTS.utils.generic_utils import load_config, setup_model\n", "from TTS.utils.text import text_to_sequence\n", "from TTS.utils.synthesis import synthesis\n", "from TTS.utils.visual import visualize\n", "\n", "import IPython\n", "from IPython.display import Audio\n", "\n", "import os\n", "os.environ['CUDA_VISIBLE_DEVICES']='1'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):\n", " t_1 = time.time()\n", " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars)\n", " if CONFIG.model == \"Tacotron\" and not use_gl:\n", " # coorect the normalization differences b/w TTS and the Vocoder.\n", " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", " mel_postnet_spec = ap._denormalize(mel_postnet_spec)\n", " mel_postnet_spec = ap_vocoder._normalize(mel_postnet_spec)\n", " if not use_gl:\n", " waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=11000, overlap=550)\n", "\n", " print(\" > Run-time: {}\".format(time.time() - t_1))\n", " if figures: \n", " visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, mel_spec) \n", " IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n", " os.makedirs(OUT_FOLDER, exist_ok=True)\n", " file_name = text.replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", " out_path = os.path.join(OUT_FOLDER, file_name)\n", " ap.save_wav(waveform, out_path)\n", " return alignment, mel_postnet_spec, stop_tokens, waveform" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set constants\n", "ROOT_PATH = '/media/erogol/data_ssd/Models/libri_tts/5049/'\n", "MODEL_PATH = ROOT_PATH + '/best_model.pth.tar'\n", "CONFIG_PATH = ROOT_PATH + '/config.json'\n", "OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/'\n", "CONFIG = load_config(CONFIG_PATH)\n", "VOCODER_MODEL_PATH = \"/media/erogol/data_ssd/Models/wavernn/universal/4910/best_model_16K.pth.tar\"\n", "VOCODER_CONFIG_PATH = \"/media/erogol/data_ssd/Models/wavernn/universal/4910/config_16K.json\"\n", "VOCODER_CONFIG = load_config(VOCODER_CONFIG_PATH)\n", "use_cuda = False\n", "\n", "# Set some config fields manually for testing\n", "# CONFIG.windowing = False\n", "# CONFIG.prenet_dropout = False\n", "# CONFIG.separate_stopnet = True\n", "# CONFIG.use_forward_attn = True\n", "# CONFIG.forward_attn_mask = True\n", "# CONFIG.stopnet = True\n", "\n", "# Set the vocoder\n", "use_gl = True # use GL if True\n", "batched_wavernn = True # use batched wavernn inference if True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# LOAD TTS MODEL\n", "from utils.text.symbols import symbols, phonemes\n", "\n", "# multi speaker \n", "if CONFIG.use_speaker_embedding:\n", " speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n", " speakers_idx_to_id = {v: k for k, v in speakers.items()}\n", "else:\n", " speakers = []\n", " speaker_id = None\n", "\n", "# load the model\n", "num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", "model = setup_model(num_chars, len(speakers), CONFIG)\n", "\n", "# load the audio processor\n", "ap = AudioProcessor(**CONFIG.audio) \n", "\n", "\n", "# load model state\n", "if use_cuda:\n", " cp = torch.load(MODEL_PATH)\n", "else:\n", " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", "\n", "# load the model\n", "model.load_state_dict(cp['model'])\n", "if use_cuda:\n", " model.cuda()\n", "model.eval()\n", "print(cp['step'])\n", "print(cp['r'])\n", "\n", "# set model stepsize \n", "if 'r' in cp:\n", " model.decoder.set_r(cp['r'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# LOAD WAVERNN\n", "if use_gl == False:\n", " from WaveRNN.models.wavernn import Model\n", " from WaveRNN.utils.audio import AudioProcessor as AudioProcessorVocoder\n", " bits = 10\n", " ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG.audio) \n", " wavernn = Model(\n", " rnn_dims=512,\n", " fc_dims=512,\n", " mode=VOCODER_CONFIG.mode,\n", " mulaw=VOCODER_CONFIG.mulaw,\n", " pad=VOCODER_CONFIG.pad,\n", " upsample_factors=VOCODER_CONFIG.upsample_factors,\n", " feat_dims=VOCODER_CONFIG.audio[\"num_mels\"],\n", " compute_dims=128,\n", " res_out_dims=128,\n", " res_blocks=10,\n", " hop_length=ap_vocoder.hop_length,\n", " sample_rate=ap_vocoder.sample_rate,\n", " use_upsample_net = True,\n", " use_aux_net = True\n", " ).cuda()\n", "\n", " check = torch.load(VOCODER_MODEL_PATH)\n", " wavernn.load_state_dict(check['model'], strict=False)\n", " if use_cuda:\n", " wavernn.cuda()\n", " wavernn.eval();\n", " print(check['step'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparision with https://mycroft.ai/blog/available-voices/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.eval()\n", "model.decoder.max_decoder_steps = 2000\n", "speaker_id = 500\n", "sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "model.eval()\n", "model.decoder.max_decoder_steps = 2000\n", "sentence = \"Seine Fuerenden Berater hatten Donald Trump seit Wochen beschworen, berichteten US-Medien: Lassen Sie das mit den Zoellen bleiben.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "sentence = \"Der Klimawandel bedroht die Gletscher im Himalaya.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Zwei Unternehmen verlieren einem Medienbericht zufolge ihre Verträge als Maut-Inkasso-Manager.\" # 'echo' is not in training set. \n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Eine Ausländermaut nach dem Geschmack der CSU wird es nicht geben - das bedauert außerhalb der Partei fast niemand.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "sentence = \"Angela Merkel ist als Klimakanzlerin gestartet.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison with https://keithito.github.io/audio-samples/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Dann vernachlässigte sie das Thema.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Nun, kurz vor dem Ende, will sie damit noch einmal neu anfangen.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Nun ist der Spieltempel pleite, und manchen Dorfbewohnern fehlt das Geld zum Essen.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Andrea Nahles will in der Fraktion die Vertrauensfrage stellen.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence=\"Die Erfolge der Grünen bringen eine Reihe Unerfahrener in die Parlamente.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison with https://google.github.io/tacotron/publications/tacotron/index.html" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence=\"Die Luftfahrtbranche arbeitet daran, CO2-neutral zu werden.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence=\"Michael Kretschmer versucht seit Monaten, die Bürger zu umgarnen.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# !zip benchmark_samples/samples.zip benchmark_samples/*" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }