{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "TTS_PATH = \"/home/erogol/projects/\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "sys.path.append(TTS_PATH) # set this if TTS is not installed globally\n",
    "import glob\n",
    "import librosa\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from scipy.stats import norm\n",
    "from tqdm import tqdm_notebook as tqdm\n",
    "from multiprocessing import Pool\n",
    "from matplotlib import pylab as plt\n",
    "from collections import Counter\n",
    "from TTS.tts.datasets.formatters import *\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "DATA_PATH = \"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/\"\n",
    "META_DATA = [\"kleinzaches/metadata.csv\",\n",
    "            \"spiegel_kaetzchen/metadata.csv\",\n",
    "            \"herrnarnesschatz/metadata.csv\",\n",
    "            \"maedchen_von_moorhof/metadata.csv\",\n",
    "            \"koenigsgaukler/metadata.csv\",\n",
    "            \"altehous/metadata.csv\",\n",
    "            \"odysseus/metadata.csv\",\n",
    "            \"undine/metadata.csv\",\n",
    "            \"reise_tilsit/metadata.csv\",\n",
    "            \"schmied_seines_glueckes/metadata.csv\",\n",
    "            \"kammmacher/metadata.csv\",\n",
    "            \"unterm_birnbaum/metadata.csv\",\n",
    "            \"liebesbriefe/metadata.csv\",\n",
    "            \"sandmann/metadata.csv\"]\n",
    "NUM_PROC = 8"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# use your own preprocessor at this stage - TTS/datasets/proprocess.py\n",
    "items = mailabs(DATA_PATH, META_DATA)\n",
    "print(\" > Number of audio files: {}\".format(len(items)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# check wavs if exist\n",
    "wav_files = []\n",
    "for item in items:\n",
    "    wav_file = item[1].strip()\n",
    "    wav_files.append(wav_file)\n",
    "    if not os.path.exists(wav_file):\n",
    "        print(waf_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# show duplicate items\n",
    "c = Counter(wav_files)\n",
    "print([item for item, count in c.items() if count > 1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "def load_item(item):\n",
    "    file_name = item[1].strip()\n",
    "    text = item[0].strip()\n",
    "    audio = librosa.load(file_name, sr=None)\n",
    "    sr = audio[1]\n",
    "    audio = audio[0]\n",
    "    audio_len = len(audio) / sr\n",
    "    text_len = len(text)\n",
    "    return file_name, text, text_len, audio, audio_len\n",
    "\n",
    "# This will take a while depending on size of dataset\n",
    "if NUM_PROC == 1:\n",
    "    data = []\n",
    "    for m in tqdm(items):\n",
    "        data += [load_item(m)]\n",
    "else:\n",
    "    with Pool(8) as p:\n",
    "        data = list(tqdm(p.imap(load_item, items), total=len(items)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# count words in the dataset\n",
    "w_count = Counter()\n",
    "for item in tqdm(data):\n",
    "    text = item[1].lower().strip()\n",
    "    for word in text.split():\n",
    "        w_count[word] += 1\n",
    "print(\" > Number of words: {}\".format(len(w_count)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "text_vs_durs = {}  # text length vs audio duration\n",
    "text_len_counter = Counter()  # number of sentences with the keyed length\n",
    "for item in tqdm(data):\n",
    "    text = item[1].lower().strip()\n",
    "    text_len = len(text)\n",
    "    text_len_counter[text_len] += 1\n",
    "    audio_len = item[-1]\n",
    "    try:\n",
    "        text_vs_durs[text_len] += [audio_len]\n",
    "    except:\n",
    "        text_vs_durs[text_len] = [audio_len]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# text_len vs avg_audio_len, median_audio_len, std_audio_len\n",
    "text_vs_avg = {}\n",
    "text_vs_median = {}\n",
    "text_vs_std = {}\n",
    "for key, durs in text_vs_durs.items():\n",
    "    text_vs_avg[key] = np.mean(durs)\n",
    "    text_vs_median[key] = np.median(durs)\n",
    "    text_vs_std[key] = np.std(durs)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Avg audio length per char"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "for item in data:\n",
    "    if item[-1] < 2:\n",
    "        print(item)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "sec_per_chars = []\n",
    "for item in data:\n",
    "    text = item[1]\n",
    "    dur = item[-1]\n",
    "    sec_per_char = dur / len(text)\n",
    "    sec_per_chars.append(sec_per_char)\n",
    "# sec_per_char /= len(data)\n",
    "# print(sec_per_char)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "mean = np.mean(sec_per_chars)\n",
    "std = np.std(sec_per_chars)\n",
    "print(mean)\n",
    "print(std)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "dist = norm(mean, std)\n",
    "\n",
    "# find irregular instances long or short voice durations\n",
    "for item in data:\n",
    "    text = item[1]\n",
    "    dur = item[-1]\n",
    "    sec_per_char = dur / len(text)\n",
    "    pdf =norm.pdf(sec_per_char)\n",
    "    if pdf < 0.39:\n",
    "        print(item)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Plot Dataset Statistics"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "plt.title(\"text length vs mean audio duration\")\n",
    "plt.scatter(list(text_vs_avg.keys()), list(text_vs_avg.values()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "plt.title(\"text length vs median audio duration\")\n",
    "plt.scatter(list(text_vs_median.keys()), list(text_vs_median.values()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "plt.title(\"text length vs STD\")\n",
    "plt.scatter(list(text_vs_std.keys()), list(text_vs_std.values()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "plt.title(\"text length vs # instances\")\n",
    "plt.scatter(list(text_len_counter.keys()), list(text_len_counter.values()))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Check words frequencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "w_count_df = pd.DataFrame.from_dict(w_count, orient='index')\n",
    "w_count_df.sort_values(0, ascending=False, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false",
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "w_count_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# check a certain word\n",
    "w_count_df.at['minute', 0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "# fequency bar plot - it takes time!!\n",
    "w_count_df.plot.bar()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}