import unittest
import torch as T

from TTS.layers.tacotron import Prenet, CBHG, Decoder, Encoder
from TTS.layers.losses import L1LossMasked, _sequence_mask


class PrenetTests(unittest.TestCase):

    def test_in_out(self):
        layer = Prenet(128, out_features=[256, 128])
        dummy_input = T.autograd.Variable(T.rand(4, 128))

        print(layer)
        output = layer(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 128


class CBHGTests(unittest.TestCase):

    def test_in_out(self):
        layer = CBHG(128, K= 6, projections=[128, 128], num_highways=2)
        dummy_input = T.autograd.Variable(T.rand(4, 8, 128))

        print(layer)
        output = layer(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 8
        assert output.shape[2] == 256


class DecoderTests(unittest.TestCase):

    def test_in_out(self):
        layer = Decoder(in_features=256, memory_dim=80, r=2)
        dummy_input = T.autograd.Variable(T.rand(4, 8, 256))
        dummy_memory = T.autograd.Variable(T.rand(4, 2, 80))

        output, alignment = layer(dummy_input, dummy_memory)
        
        assert output.shape[0] == 4
        assert output.shape[1] == 1, "size not {}".format(output.shape[1])
        assert output.shape[2] == 80 * 2, "size not {}".format(output.shape[2])
        

class EncoderTests(unittest.TestCase):

    def test_in_out(self):
        layer = Encoder(128)
        dummy_input = T.autograd.Variable(T.rand(4, 8, 128))

        print(layer)
        output = layer(dummy_input)
        print(output.shape)
        assert output.shape[0] == 4
        assert output.shape[1] == 8
        assert output.shape[2] == 256  # 128 * 2 BiRNN
        

class L1LossMaskedTests(unittest.TestCase):
    
    def test_in_out(self):
        layer = L1LossMasked()
        dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_target = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.shape[0] == 0
        assert len(output.shape) == 1
        assert output.data[0] == 0.0
        
        dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_target = T.autograd.Variable(T.zeros(4, 8, 128).float())
        dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.data[0] == 1.0, "1.0 vs {}".format(output.data[0])

        dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_target = T.autograd.Variable(T.zeros(4, 8, 128).float())
        dummy_length = T.autograd.Variable((T.arange(5,9)).long())
        mask = ((_sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.data[0] == 1.0, "1.0 vs {}".format(output.data[0])