import pkg_resources installed = {pkg.key for pkg in pkg_resources.working_set} if 'tensorflow' in installed: import tensorflow as tf import torch import numpy as np from .text import text_to_sequence, phoneme_to_sequence def text_to_seqvec(text, CONFIG, use_cuda): text_cleaner = [CONFIG.text_cleaner] # text ot phonemes to sequence vector if CONFIG.use_phonemes: seq = np.asarray( phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language, CONFIG.enable_eos_bos_chars, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None), dtype=np.int32) else: seq = np.asarray(text_to_sequence(text, text_cleaner, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None), dtype=np.int32) return seq def numpy_to_torch(np_array, dtype, cuda=False): if np_array is None: return None tensor = torch.Tensor(np_array, dtype=dtype) if cuda: return tensor.cuda() return tensor def numpy_to_tf(np_array, dtype): if np_array is None: return None tensor = tf.convert_to_tensor(np_array, dtype=dtype) return tensor def compute_style_mel(style_wav, ap, use_cuda): style_mel = ap.melspectrogram( ap.load_wav(style_wav)).expand_dims(0) return style_mel def run_model_torch(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): if CONFIG.use_gst: decoder_output, postnet_output, alignments, stop_tokens = model.inference( inputs, style_mel=style_mel, speaker_ids=speaker_id) else: if truncated: decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated( inputs, speaker_ids=speaker_id) else: decoder_output, postnet_output, alignments, stop_tokens = model.inference( inputs, speaker_ids=speaker_id) return decoder_output, postnet_output, alignments, stop_tokens def run_model_tf(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): if CONFIG.use_gst: raise NotImplemented(' [!] GST inference not implemented for TF') if truncated: raise NotImplemented(' [!] Truncated inference not implemented for TF') # TODO: handle multispeaker case decoder_output, postnet_output, alignments, stop_tokens = model( inputs, training=False) return decoder_output, postnet_output, alignments, stop_tokens def parse_outputs_torch(postnet_output, decoder_output, alignments, stop_tokens): postnet_output = postnet_output[0].data.cpu().numpy() decoder_output = decoder_output[0].data.cpu().numpy() alignment = alignments[0].cpu().data.numpy() stop_tokens = stop_tokens[0].cpu().numpy() return postnet_output, decoder_output, alignment, stop_tokens def parse_outputs_tf(postnet_output, decoder_output, alignments, stop_tokens): postnet_output = postnet_output[0].numpy() decoder_output = decoder_output[0].numpy() alignment = alignments[0].numpy() stop_tokens = stop_tokens[0].numpy() return postnet_output, decoder_output, alignment, stop_tokens def trim_silence(wav, ap): return wav[:ap.find_endpoint(wav)] def inv_spectrogram(postnet_output, ap, CONFIG): if CONFIG.model in ["Tacotron", "TacotronGST"]: wav = ap.inv_spectrogram(postnet_output.T) else: wav = ap.inv_melspectrogram(postnet_output.T) return wav def id_to_torch(speaker_id): if speaker_id is not None: speaker_id = np.asarray(speaker_id) speaker_id = torch.from_numpy(speaker_id).unsqueeze(0) return speaker_id # TODO: perform GL with pytorch for batching def apply_griffin_lim(inputs, input_lens, CONFIG, ap): '''Apply griffin-lim to each sample iterating throught the first dimension. Args: inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size. input_lens (Tensor or np.Array): 1D array of sample lengths. CONFIG (Dict): TTS config. ap (AudioProcessor): TTS audio processor. ''' wavs = [] for idx, spec in enumerate(inputs): wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length # inverse librosa padding wav = inv_spectrogram(spec, ap, CONFIG) # assert len(wav) == wav_len, f" [!] wav lenght: {len(wav)} vs expected: {wav_len}" wavs.append(wav[:wav_len]) return wavs def synthesis(model, text, CONFIG, use_cuda, ap, speaker_id=None, style_wav=None, truncated=False, enable_eos_bos_chars=False, #pylint: disable=unused-argument use_griffin_lim=False, do_trim_silence=False, backend='torch'): """Synthesize voice for the given text. Args: model (TTS.models): model to synthesize. text (str): target text CONFIG (dict): config dictionary to be loaded from config.json. use_cuda (bool): enable cuda. ap (TTS.utils.audio.AudioProcessor): audio processor to process model outputs. speaker_id (int): id of speaker style_wav (str): Uses for style embedding of GST. truncated (bool): keep model states after inference. It can be used for continuous inference at long texts. enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence. do_trim_silence (bool): trim silence after synthesis. backend (str): tf or torch """ # GST processing style_mel = None if CONFIG.model == "TacotronGST" and style_wav is not None: style_mel = compute_style_mel(style_wav, ap, use_cuda) # preprocess the given text inputs = text_to_seqvec(text, CONFIG, use_cuda) # pass tensors to backend if backend == 'torch': speaker_id = id_to_torch(speaker_id) style_mel = numpy_to_torch(style_mel, torch.float, cuda=use_cuda) inputs = numpy_to_torch(inputs, torch.long, cuda=use_cuda) inputs = inputs.unsqueeze(0) else: # TODO: handle speaker id for tf model style_mel = numpy_to_tf(style_mel, tf.float32) inputs = numpy_to_tf(inputs, tf.int32) inputs = tf.expand_dims(inputs, 0) # synthesize voice if backend == 'torch': decoder_output, postnet_output, alignments, stop_tokens = run_model_torch( model, inputs, CONFIG, truncated, speaker_id, style_mel) postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_torch( postnet_output, decoder_output, alignments, stop_tokens) else: decoder_output, postnet_output, alignments, stop_tokens = run_model_tf( model, inputs, CONFIG, truncated, speaker_id, style_mel) postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_tf( postnet_output, decoder_output, alignments, stop_tokens) # convert outputs to numpy # plot results wav = None if use_griffin_lim: wav = inv_spectrogram(postnet_output, ap, CONFIG) # trim silence if do_trim_silence: wav = trim_silence(wav, ap) return wav, alignment, decoder_output, postnet_output, stop_tokens, inputs