import numpy as np


def _pad_data(x, length):
    _pad = 0
    assert x.ndim == 1
    return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad)


def prepare_data(inputs):
    max_len = max((len(x) for x in inputs))
    return np.stack([_pad_data(x, max_len) for x in inputs])


def _pad_tensor(x, length):
    _pad = 0.0
    assert x.ndim == 2
    x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode="constant", constant_values=_pad)
    return x


def prepare_tensor(inputs, out_steps):
    max_len = max((x.shape[1] for x in inputs))
    remainder = max_len % out_steps
    pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len
    return np.stack([_pad_tensor(x, pad_len) for x in inputs])


def _pad_stop_target(x: np.ndarray, length: int, pad_val=1) -> np.ndarray:
    """Pad stop target array.

    Args:
        x (np.ndarray): Stop target array.
        length (int): Length after padding.
        pad_val (int, optional): Padding value. Defaults to 1.

    Returns:
        np.ndarray: Padded stop target array.
    """
    assert x.ndim == 1
    return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val)


def prepare_stop_target(inputs, out_steps):
    """Pad row vectors with 1."""
    max_len = max((x.shape[0] for x in inputs))
    remainder = max_len % out_steps
    pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len
    return np.stack([_pad_stop_target(x, pad_len) for x in inputs])


def pad_per_step(inputs, pad_len):
    return np.pad(inputs, [[0, 0], [0, 0], [0, pad_len]], mode="constant", constant_values=0.0)