{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This is to test TTS models with benchmark sentences for speech synthesis.\n", "\n", "Before running this script please DON'T FORGET: \n", "- to set file paths.\n", "- to download related model files from TTS and WaveRNN.\n", "- to checkout right commit versions (given next to the model) of TTS and WaveRNN.\n", "- to set the right paths in the cell below.\n", "\n", "Repositories:\n", "- TTS: https://github.com/mozilla/TTS\n", "- WaveRNN: https://github.com/erogol/WaveRNN" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TTS_PATH = \"/home/erogol/projects/\"\n", "WAVERNN_PATH =\"/home/erogol/projects/\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "import sys\n", "import io\n", "import torch \n", "import time\n", "import numpy as np\n", "from collections import OrderedDict\n", "from matplotlib import pylab as plt\n", "\n", "%pylab inline\n", "rcParams[\"figure.figsize\"] = (16,5)\n", "\n", "# add libraries into environment\n", "sys.path.append(TTS_PATH) # set this if TTS is not installed globally\n", "sys.path.append(WAVERNN_PATH) # set this if TTS is not installed globally\n", "\n", "import librosa\n", "import librosa.display\n", "\n", "from TTS.models.tacotron import Tacotron \n", "from TTS.layers import *\n", "from TTS.utils.data import *\n", "from TTS.utils.audio import AudioProcessor\n", "from TTS.utils.generic_utils import load_config, setup_model\n", "from TTS.utils.text import text_to_sequence\n", "from TTS.utils.synthesis import synthesis\n", "from TTS.utils.visual import visualize\n", "\n", "import IPython\n", "from IPython.display import Audio\n", "\n", "import os\n", "os.environ['CUDA_VISIBLE_DEVICES']='1'\n", "os.environ['OMP_NUM_THREADS']='1'\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def tts(model, text, CONFIG, use_cuda, ap, use_gl, speaker_id=None, figures=True):\n", " t_1 = time.time()\n", " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, truncated=False, speaker_id=speaker_id, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars)\n", " if CONFIG.model == \"Tacotron\" and not use_gl:\n", " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", " if not use_gl:\n", " waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=11000, overlap=550)\n", "\n", " print(\" > Run-time: {}\".format(time.time() - t_1))\n", " if figures: \n", " visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, mel_spec) \n", " IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n", " os.makedirs(OUT_FOLDER, exist_ok=True)\n", " file_name = text.replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", " out_path = os.path.join(OUT_FOLDER, file_name)\n", " ap.save_wav(waveform, out_path)\n", " return alignment, mel_postnet_spec, stop_tokens, waveform" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Set constants\n", "ROOT_PATH = '/media/erogol/data_ssd/Data/models/mozilla_models/4845/'\n", "MODEL_PATH = ROOT_PATH + 'best_model.pth.tar'\n", "CONFIG_PATH = ROOT_PATH + '/config.json'\n", "OUT_FOLDER = \"/home/erogol/Dropbox/AudioSamples/benchmark_samples/\"\n", "CONFIG = load_config(CONFIG_PATH)\n", "VOCODER_MODEL_PATH = \"/media/erogol/data_ssd/Data/models/wavernn/mozilla/mozilla-May24-4763/model_checkpoints/best_model.pth.tar\"\n", "VOCODER_CONFIG_PATH = \"/media/erogol/data_ssd/Data/models/wavernn/mozilla/mozilla-May24-4763/config.json\"\n", "VOCODER_CONFIG = load_config(VOCODER_CONFIG_PATH)\n", "use_cuda = False\n", "\n", "# Set some config fields manually for testing\n", "# CONFIG.windowing = False\n", "# CONFIG.prenet_dropout = False\n", "# CONFIG.separate_stopnet = True\n", "# CONFIG.stopnet = True\n", "\n", "# Set the vocoder\n", "use_gl = True # use GL if True\n", "batched_wavernn = True # use batched wavernn inference if True" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# LOAD TTS MODEL\n", "from utils.text.symbols import symbols, phonemes\n", "\n", "# load the model\n", "num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", "model = setup_model(num_chars, CONFIG)\n", "\n", "# load the audio processor\n", "ap = AudioProcessor(**CONFIG.audio) \n", "\n", "\n", "# load model state\n", "if use_cuda:\n", " cp = torch.load(MODEL_PATH)\n", "else:\n", " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", "\n", "# load the model\n", "model.load_state_dict(cp['model'])\n", "if use_cuda:\n", " model.cuda()\n", "model.eval()\n", "print(cp['step'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# LOAD WAVERNN\n", "if use_gl == False:\n", " from WaveRNN.models.wavernn import Model\n", " bits = 10\n", "\n", " wavernn = Model(\n", " rnn_dims=512,\n", " fc_dims=512,\n", " mode=\"mold\",\n", " pad=2,\n", " upsample_factors=VOCODER_CONFIG.upsample_factors, # set this depending on dataset\n", " feat_dims=VOCODER_CONFIG.audio[\"num_mels\"],\n", " compute_dims=128,\n", " res_out_dims=128,\n", " res_blocks=10,\n", " hop_length=ap.hop_length,\n", " sample_rate=ap.sample_rate,\n", " ).cuda()\n", "\n", "\n", " check = torch.load(VOCODER_MODEL_PATH)\n", " wavernn.load_state_dict(check['model'])\n", " if use_cuda:\n", " wavernn.cuda()\n", " wavernn.eval();\n", " print(check['step'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparision with https://mycroft.ai/blog/available-voices/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "model.eval()\n", "model.decoder.max_decoder_steps = 2000\n", "speaker_id = 0\n", "sentence = \"Bill got in the habit of asking himself “Is that thought true?” And if he wasn’t absolutely certain it was, he just let it go.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"The human voice is the most perfect instrument of all.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "sentence = \"This cake is great. It's so delicious and moist.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison with https://keithito.github.io/audio-samples/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Scientists at the CERN laboratory say they have discovered a new particle.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Here’s a way to measure the acute emotional intelligence that has never gone out of style.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"President Trump met with other leaders at the Group of 20 conference.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"The buses aren't the problem, they actually provide a solution.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison with https://google.github.io/tacotron/publications/tacotron/index.html" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Basilar membrane and otolaryngology are not auto-correlations.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \" He has read the whole thing.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"He reads books.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "sentence = \"Thisss isrealy awhsome.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "sentence = \"This is your internet browser, Firefox.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"This is your internet browser Firefox.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"The quick brown fox jumps over the lazy dog.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Does the quick brown fox jump over the lazy dog?\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Eren, how are you?\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Hard Sentences" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Encouraged, he started with a minute a day.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe .\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . \"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sentence = \"If he decided to watch TV he really watched it.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "sentence = \"Often we try to bring about change through sheer effort and we put all of our energy into a new initiative .\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# for twb dataset\n", "sentence = \"In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# !zip benchmark_samples/samples.zip benchmark_samples/*" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3(mztts)", "language": "python", "name": "mztts" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }