import glob import os import shutil from tests import get_device_id, get_tests_output_path, run_cli from TTS.config.shared_configs import BaseDatasetConfig from TTS.tts.configs.vits_config import VitsConfig config_path = os.path.join(get_tests_output_path(), "test_model_config.json") output_path = os.path.join(get_tests_output_path(), "train_outputs") dataset_config_en = BaseDatasetConfig( name="ljspeech", meta_file_train="metadata.csv", meta_file_val="metadata.csv", path="tests/data/ljspeech", language="en", ) dataset_config_pt = BaseDatasetConfig( name="ljspeech", meta_file_train="metadata.csv", meta_file_val="metadata.csv", path="tests/data/ljspeech", language="pt-br", ) config = VitsConfig( batch_size=2, eval_batch_size=2, num_loader_workers=0, num_eval_loader_workers=0, text_cleaner="english_cleaners", use_phonemes=True, use_espeak_phonemes=True, phoneme_language="en-us", phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", run_eval=True, test_delay_epochs=-1, epochs=1, print_step=1, print_eval=True, test_sentences=[ ["Be a voice, not an echo.", "ljspeech", None, "en"], ["Be a voice, not an echo.", "ljspeech", None, "pt-br"], ], datasets=[dataset_config_en, dataset_config_pt], ) # set audio config config.audio.do_trim_silence = True config.audio.trim_db = 60 # active multilingual mode config.model_args.use_language_embedding = True config.use_language_embedding = True # active multispeaker mode config.model_args.use_speaker_embedding = True config.use_speaker_embedding = True # deactivate multispeaker d-vec mode config.model_args.use_d_vector_file = False config.use_d_vector_file = False # duration predictor config.model_args.use_sdp = False config.use_sdp = False # active language sampler config.use_language_weighted_sampler = True config.save_json(config_path) # train the model for one epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " f"--coqpit.output_path {output_path} " "--coqpit.test_delay_epochs 0" ) run_cli(command_train) # Find latest folder continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) # restore the model and continue training for one more epoch command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " run_cli(command_train) shutil.rmtree(continue_path)