import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d from torch.nn.utils import weight_norm, remove_weight_norm LRELU_SLOPE = 0.1 def get_padding(k, d): return int((k * d - d) / 2) class ResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.convs1 = nn.ModuleList([ weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs2 = nn.ModuleList([ weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.convs = nn.ModuleList([ weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm( Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class HifiganGenerator(torch.nn.Module): def __init__(self, in_channels, out_channels, resblock_type, resblock_dilation_sizes, resblock_kernel_sizes, upsample_kernel_sizes, upsample_initial_channel, upsample_factors): super().__init__() self.inference_padding = 5 self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_factors) self.conv_pre = weight_norm( Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if resblock_type == '1' else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d(upsample_initial_channel // (2**i), upsample_initial_channel // (2**(i + 1)), k, u, padding=(k - u) // 2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2**(i + 1)) for j, (k, d) in enumerate( zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3)) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def inference(self, c): c = c.to(self.conv_pre.weight.device) c = torch.nn.functional.pad( c, (self.inference_padding, self.inference_padding), 'replicate') return self.forward(c) def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post)