import os from TTS.config import load_config, register_config from TTS.trainer import Trainer, TrainingArgs from TTS.tts.datasets import load_tts_samples from TTS.tts.models import setup_model from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.audio import AudioProcessor def main(): """Run `tts` model training directly by a `config.json` file.""" # init trainer args train_args = TrainingArgs() parser = train_args.init_argparse(arg_prefix="") # override trainer args from comman-line args args, config_overrides = parser.parse_known_args() train_args.parse_args(args) # load config.json and register if args.config_path or args.continue_path: if args.config_path: # init from a file config = load_config(args.config_path) if len(config_overrides) > 0: config.parse_known_args(config_overrides, relaxed_parser=True) elif args.continue_path: # continue from a prev experiment config = load_config(os.path.join(args.continue_path, "config.json")) if len(config_overrides) > 0: config.parse_known_args(config_overrides, relaxed_parser=True) else: # init from console args from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel config_base = BaseTrainingConfig() config_base.parse_known_args(config_overrides) config = register_config(config_base.model)() # load training samples train_samples, eval_samples = load_tts_samples(config.datasets, eval_split=True) # setup audio processor ap = AudioProcessor(**config.audio) # init speaker manager if config.use_speaker_embedding: speaker_manager = SpeakerManager(data_items=train_samples + eval_samples) elif config.use_d_vector_file: speaker_manager = SpeakerManager(d_vectors_file_path=config.d_vector_file) else: speaker_manager = None # init the model from config model = setup_model(config, speaker_manager) # init the trainer and 🚀 trainer = Trainer( train_args, config, config.output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, parse_command_line_args=True, ) trainer.fit() if __name__ == "__main__": main()