import functools import math import random import torch import torch.nn as nn import torch.nn.functional as F try: import deepspeed from deepspeed.ops.transformer.inference import DeepSpeedTransformerInferenceKernel except ImportError: pass import dlas.codes.torch_intermediary as ml from dlas.codes.models.arch_util import AttentionBlock from dlas.codes.trainer.networks import register_model from dlas.codes.utils.transformers.stream_generator import init_stream_support from dlas.codes.utils.util import opt_get from transformers import GPT2Config, GPT2PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions init_stream_support() def null_position_embeddings(range, dim): return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) class ResBlock(nn.Module): """ Basic residual convolutional block that uses GroupNorm. """ def __init__(self, chan): super().__init__() self.net = nn.Sequential( nn.Conv1d(chan, chan, kernel_size=3, padding=1), nn.GroupNorm(chan // 8, chan), nn.ReLU(), nn.Conv1d(chan, chan, kernel_size=3, padding=1), nn.GroupNorm(chan // 8, chan), ) def forward(self, x): return F.relu(self.net(x) + x) class GPT2InferenceModel(GPT2PreTrainedModel): """Override GPT2LMHeadModel to allow for prefix conditioning.""" def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): super().__init__(config) self.transformer = gpt self.pos_embedding = pos_emb self.embeddings = embeddings self.final_norm = norm self.lm_head = nn.Sequential(norm, linear) self.kv_cache = kv_cache def store_prefix_emb(self, prefix_emb): self.cached_prefix_emb = prefix_emb def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # usually None if not self.kv_cache: past_key_values = None # only last token for inputs_ids if past is defined in kwargs if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values is not None: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): assert self.cached_prefix_emb is not None assert inputs_embeds is None # Not supported by this inference model. assert labels is None # Training not supported by this inference model. return_dict = return_dict if return_dict is not None else self.config.use_return_dict # assert len(past_key_values) + len(input_ids) == attention_mask.shape[1] # Create embedding prefix_len = self.cached_prefix_emb.shape[1] if input_ids.shape[1] != 1: gen_inputs = input_ids[:, prefix_len:] gen_emb = self.embeddings(gen_inputs) gen_emb = gen_emb + self.pos_embedding(gen_emb) if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: prefix_emb = self.cached_prefix_emb.repeat_interleave( gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 ) else: prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) emb = torch.cat([prefix_emb, gen_emb], dim=1) else: emb = self.embeddings(input_ids) emb = emb + self.pos_embedding.get_fixed_embedding( attention_mask.shape[1] - (prefix_len + 1), attention_mask.device ) transformer_outputs = self.transformer( inputs_embeds=emb, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + transformer_outputs[1:] return CausalLMOutputWithCrossAttentions( loss=None, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past, beam_idx): """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) class ConditioningEncoder(nn.Module): def __init__( self, spec_dim, embedding_dim, attn_blocks=6, num_attn_heads=4, do_checkpointing=False, mean=False, ): super().__init__() attn = [] self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) for a in range(attn_blocks): attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing)) self.attn = nn.Sequential(*attn) self.dim = embedding_dim self.do_checkpointing = do_checkpointing self.mean = mean def forward(self, x): h = self.init(x) h = self.attn(h) if self.mean: return h.mean(dim=2) else: return h[:, :, 0] class LearnedPositionEmbeddings(nn.Module): def __init__(self, seq_len, model_dim, init=0.02, relative=False): super().__init__() # nn.Embedding self.emb = torch.nn.Embedding(seq_len, model_dim) # Initializing this way is standard for GPT-2 self.emb.weight.data.normal_(mean=0.0, std=init) self.relative = relative self.seq_len = seq_len def forward(self, x): sl = x.shape[1] if self.relative: start = random.randint(sl, self.seq_len) - sl return self.emb(torch.arange(start, start + sl, device=x.device)) else: return self.emb(torch.arange(0, sl, device=x.device)) def get_fixed_embedding(self, ind, dev): return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) def build_hf_gpt_transformer( layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, max_prompt_len, checkpointing, ): """ GPT-2 implemented by the HuggingFace library. """ from transformers import GPT2Config, GPT2Model gpt_config = GPT2Config( vocab_size=256, # Unused. n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, n_embd=model_dim, n_layer=layers, n_head=heads, gradient_checkpointing=checkpointing, use_cache=not checkpointing, ) gpt = GPT2Model(gpt_config) # Override the built in positional embeddings del gpt.wpe gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) # Built-in token embeddings are unused. del gpt.wte # def _attn(self, query, key, value, attention_mask=None, head_mask=None): # attn_output = torch.nn.functional.scaled_dot_product_attention( # query, key, value, dropout_p=self.attn_dropout.p, is_causal=True # ) # return attn_output, None # for i in range(len(gpt.h)): # gpt.h[i].attn._attn = types.MethodType( # _attn, gpt.h[i].attn # ) mel_pos_emb = ( LearnedPositionEmbeddings(max_mel_seq_len, model_dim) if max_mel_seq_len != -1 else functools.partial(null_position_embeddings, dim=model_dim) ) text_pos_emb = ( LearnedPositionEmbeddings(max_text_seq_len, model_dim) if max_mel_seq_len != -1 else functools.partial(null_position_embeddings, dim=model_dim) ) # gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True) return gpt, mel_pos_emb, text_pos_emb, None, None class MelEncoder(nn.Module): def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): super().__init__() self.channels = channels self.encoder = nn.Sequential( nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1), nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]), nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1), nn.GroupNorm(channels // 16, channels // 2), nn.ReLU(), nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]), nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1), nn.GroupNorm(channels // 8, channels), nn.ReLU(), nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), ) self.reduction = 4 def forward(self, x): for e in self.encoder: x = e(x) return x.permute(0, 2, 1) class UnifiedVoice(nn.Module): def __init__( self, start_text_token=261, stop_text_token=0, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_prompt_tokens=70, max_conditioning_inputs=1, mel_length_compression=1024, number_text_tokens=256, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True, checkpointing=True, average_conditioning_embeddings=False, freeze_everything_but_position_embeddings=False, freeze_conditioning_encoder=False, tortoise_compat=True, label_smoothing=0.0, ): """ Args: layers: Number of layers in transformer stack. model_dim: Operating dimensions of the transformer heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 max_text_tokens: Maximum number of text tokens that will be encountered by model. max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). mel_length_compression: The factor between and . Used to compute MEL code padding given wav input length. number_text_tokens: start_text_token: stop_text_token: number_mel_codes: start_mel_token: stop_mel_token: train_solo_embeddings: use_mel_codes_as_input: checkpointing: average_conditioning_embeddings: Whether or not conditioning embeddings should be averaged, instead of fed piecewise into the model. """ super().__init__() self.label_smoothing = label_smoothing self.number_text_tokens = number_text_tokens self.start_text_token = start_text_token self.stop_text_token = stop_text_token self.number_mel_codes = number_mel_codes self.start_mel_token = start_mel_token self.stop_mel_token = stop_mel_token self.start_prompt_token = start_mel_token self.stop_prompt_token = stop_mel_token self.layers = layers self.heads = heads self.model_dim = model_dim self.max_conditioning_inputs = max_conditioning_inputs self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 self.max_prompt_tokens = max_prompt_tokens self.mel_length_compression = mel_length_compression # self.conditioning_encoder = ConditioningEncoder( # 80, model_dim, num_attn_heads=heads # ) self.average_conditioning_embeddings = average_conditioning_embeddings self.tortoise_compat = tortoise_compat # credit to https://github.com/152334H/DL-Art-School/commit/ae80992817059acf6eef38a680efa5124cee570b # nn.Embedding self.text_embedding = ml.Embedding(self.number_text_tokens, model_dim) if use_mel_codes_as_input: # nn.Embedding self.mel_embedding = ml.Embedding(self.number_mel_codes, model_dim) else: self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) ( self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding, ) = build_hf_gpt_transformer( layers, model_dim, heads, self.max_mel_tokens, self.max_text_tokens, self.max_prompt_tokens, checkpointing, ) if train_solo_embeddings: self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) else: self.mel_solo_embedding = 0 self.text_solo_embedding = 0 self.final_norm = nn.LayerNorm(model_dim) self.text_head = ml.Linear(model_dim, self.number_text_tokens) self.mel_head = ml.Linear(model_dim, self.number_mel_codes) # Initialize the embeddings per the GPT-2 scheme embeddings = [self.text_embedding] if use_mel_codes_as_input: embeddings.append(self.mel_embedding) for module in embeddings: module.weight.data.normal_(mean=0.0, std=0.02) if freeze_conditioning_encoder: print(" > Freezing conditioning encoder.") for p in self.conditioning_encoder.parameters(): p.requires_grad = False p.DO_NOT_TRAIN = True if freeze_everything_but_position_embeddings: for p in self.parameters(): p.requires_grad = False p.DO_NOT_TRAIN = True for m in [self.mel_pos_embedding, self.text_pos_embedding]: for p in m.parameters(): del p.DO_NOT_TRAIN p.requires_grad = True def get_grad_norm_parameter_groups(self): return { "conditioning_encoder": list(self.conditioning_encoder.parameters()), "gpt": list(self.gpt.parameters()), "heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), } def post_init_gpt2_config(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False): seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1 gpt_config = GPT2Config( vocab_size=self.max_mel_tokens, n_positions=seq_length, n_ctx=seq_length, n_embd=self.model_dim, n_layer=self.layers, n_head=self.heads, gradient_checkpointing=False, use_cache=True, ) self.inference_model = GPT2InferenceModel( gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head, kv_cache=kv_cache, ) # self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head) self.gpt.wte = self.mel_embedding if use_deepspeed: # init deepspeed inference engine if use_deepspeed_f16: self.gpt.wte = self.mel_embedding.half() self.gpt.wpe = self.mel_pos_embedding.half() self.ds_engine = deepspeed.init_inference( model=self.inference_model.half(), # Transformers models mp_size=1, # Number of GPU dtype=torch.float16 if use_deepspeed_f16 else torch.float32, # desired data type of output replace_method="auto", # Lets DS autmatically identify the layer to replace replace_with_kernel_inject=True, # replace the model with the kernel injector ) self.inference_model = self.ds_engine.module.eval() def build_aligned_inputs_and_targets(self, input, start_token, stop_token): inp = F.pad(input, (1, 0), value=start_token) tar = F.pad(input, (0, 1), value=stop_token) return inp, tar def set_mel_padding(self, mel_input_tokens, mel_lengths): """ Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required preformatting to create a working TTS model. """ # Set padding areas within MEL (currently it is coded with the MEL code for ). for b in range(len(mel_lengths)): actual_end = mel_lengths[b] if actual_end < mel_input_tokens.shape[-1]: mel_input_tokens[b, actual_end:] = self.stop_mel_token return mel_input_tokens def get_logits( self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, prompt=None, get_attns=False, return_latent=False, attn_mask_text=None, attn_mask_mel=None, ): if prompt is not None and speech_conditioning_inputs is not None: offset = speech_conditioning_inputs.shape[1] + prompt.shape[1] if second_inputs is not None: emb = torch.cat( [speech_conditioning_inputs, prompt, first_inputs, second_inputs], dim=1, ) else: emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1) elif speech_conditioning_inputs is not None: offset = speech_conditioning_inputs.shape[1] if second_inputs is not None: emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) else: emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) elif prompt is not None: offset = prompt.shape[1] if second_inputs is not None: emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) else: emb = torch.cat([prompt, first_inputs], dim=1) # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): attn_mask = None if attn_mask_text is not None: attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) if prompt is not None: attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1) gpt_out = self.gpt( inputs_embeds=emb, return_dict=True, output_attentions=get_attns, attention_mask=attn_mask, ) if get_attns: return gpt_out.attentions enc = gpt_out.last_hidden_state[:, offset:] enc = self.final_norm(enc) if return_latent: return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] first_logits = enc[:, : first_inputs.shape[1]] first_logits = first_head(first_logits) first_logits = first_logits.permute(0, 2, 1) if second_inputs is not None: second_logits = enc[:, -second_inputs.shape[1] :] second_logits = second_head(second_logits) second_logits = second_logits.permute(0, 2, 1) return first_logits, second_logits else: return first_logits def get_conditioning(self, speech_conditioning_input): speech_conditioning_input = ( speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input ) conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) conds = torch.stack(conds, dim=1) conds = conds.mean(dim=1) return conds def get_prompts(self, prompt_codes): """ Create a prompt from the mel codes. This is used to condition the model on the mel codes. Pad the prompt with start and stop mel tokens. """ prompt = prompt_codes if self.training: prompt_len = random.randint(1, 9) # in secs prompt_len = prompt_len * 24 # in frames if prompt_codes.shape[1] < prompt_len: prompt_len = prompt_codes.shape[-1] start = 0 else: start = random.randint(0, prompt_codes.shape[-1] - prompt_len) prompt = prompt_codes[:, start : start + prompt_len] # add start and stop tokens prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) return prompt # def get_prompts(self, prompt_codes): # """ # Create a prompt from the mel codes. This is used to condition the model on the mel codes. # Pad the prompt with start and stop mel tokens. # """ # prompt = prompt_codes # if self.training: # max_prompt_len = 9 * 24 # if prompt_codes.shape[1] < max_prompt_len: # prompt = prompt_codes # else: # start = random.randint(0, prompt_codes.shape[1] - max_prompt_len) # prompt = prompt_codes[:, start : start + max_prompt_len] # # add start and stop tokens # prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) # prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) # return prompt def forward( self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, prompt_codes, loss_weights=None, text_first=True, return_attentions=False, return_latent=False, ): """ Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode (actuated by `text_first`). speech_conditioning_input: MEL float tensor, (b,80,s) text_inputs: long tensor, (b,t) text_lengths: long tensor, (b,) mel_inputs: long tensor, (b,m) wav_lengths: long tensor, (b,) If return_attentions is specified, only logits are returned. If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. """ # ❗ FIXIT speech_conditioning_input = None if self.max_conditioning_inputs == 0: assert ( speech_conditioning_input is None ), " ❗ speech_conditioning_input is not None, but max_conditioning_inputs == 0" max_text_len = text_lengths.max() # Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values # Like [..., 186, 45, 45, 83] where actually it should end with 186. # We take last 3 codes to prevent abrupt ending of the audio. # TODO: This is might need some testing. mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3 # If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes. max_mel_len = mel_lengths.max() if max_mel_len > mel_codes.shape[-1]: mel_codes = F.pad(mel_codes, (0, max_mel_len - mel_codes.shape[-1])) # mel_lengths[mel_lengths >= max_mel_len] = max_mel_len # silence aware lengths, skip the silence tokens at the end of the mel codes. silence = True for idx, l in enumerate(mel_lengths): length = l.item() while silence: if mel_codes[idx, length - 1] != 83: break length -= 1 mel_lengths[idx] = length # Lovely assertions assert ( max_mel_len <= mel_codes.shape[-1] ), f" ❗ max_mel_len ({max_mel_len}) > mel_codes.shape[-1] ({mel_codes.shape[-1]})" assert ( max_text_len <= text_inputs.shape[-1] ), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" # Append stop token to text inputs text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) # Append silence token to mel codes mel_codes = F.pad(mel_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token) # Pad mel codes with STOP_MEL_TOKEN mel_codes = self.set_mel_padding(mel_codes, mel_lengths) # Compute speech conditioning input conds = None if speech_conditioning_input is not None: if not return_latent: # Compute speech conditioning input speech_conditioning_input = ( speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input ) conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) conds = torch.stack(conds, dim=1) if self.average_conditioning_embeddings: conds = conds.mean(dim=1).unsqueeze(1) else: # already computed conds = speech_conditioning_input.unsqueeze(1) # Build input and target tensors # Prepend start token to inputs and append stop token to targets text_inputs, text_targets = self.build_aligned_inputs_and_targets( text_inputs, self.start_text_token, self.stop_text_token ) mel_codes, mel_targets = self.build_aligned_inputs_and_targets( mel_codes, self.start_mel_token, self.stop_mel_token ) # Set attn_mask attn_mask_text = None attn_mask_mel = None if not return_latent: attn_mask_text = torch.ones( text_inputs.shape[0], text_inputs.shape[1], dtype=torch.bool, device=text_inputs.device, ) attn_mask_mel = torch.ones( mel_codes.shape[0], mel_codes.shape[1], dtype=torch.bool, device=mel_codes.device, ) for idx, l in enumerate(text_lengths): attn_mask_text[idx, l + 1 :] = 0.0 for idx, l in enumerate(mel_lengths): attn_mask_mel[idx, l + 1 :] = 0.0 # Compute text embeddings + positional embeddings # print(" > text input latent:", text_inputs) text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) # Compute mel embeddings + positional embeddings mel_emb = self.mel_embedding(mel_codes) + self.mel_pos_embedding(mel_codes) # Compute prompt embeddings + positional embeddings prompt = self.get_prompts(prompt_codes) prompt_emb = self.mel_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach() # Get logits sub = -4 # don't ask me why 😄 if self.training: sub = -1 text_logits, mel_logits = self.get_logits( conds, text_emb, self.text_head, mel_emb, self.mel_head, prompt=prompt_emb, get_attns=return_attentions, return_latent=return_latent, attn_mask_text=attn_mask_text, attn_mask_mel=attn_mask_mel, ) if return_latent: return mel_logits[:, :sub] # sub to prevent bla. if return_attentions: return mel_logits # Set paddings to -1 to ignore them in loss for idx, l in enumerate(text_lengths): text_targets[idx, l + 1 :] = -1 for idx, l in enumerate(mel_lengths): mel_targets[idx, l + 1 :] = -1 # check if stoptoken is in every row of mel_targets assert (mel_targets == self.stop_mel_token).sum() >= mel_targets.shape[ 0 ], f" ❗ mel_targets does not contain stop token ({self.stop_mel_token}) in every row." # Compute losses loss_text = F.cross_entropy( text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing ) loss_mel = F.cross_entropy( mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing ) # if loss_weights is not None: # loss_text = loss_text * loss_weights[:, None] # loss_mel = loss_mel * loss_weights[:, None] return loss_text.mean(), loss_mel.mean(), mel_logits def text_forward(self, speech_conditioning_input, text_inputs, text_lengths): """ Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided). """ # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by # chopping the inputs by the maximum actual length. max_text_len = text_lengths.max() text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) speech_conditioning_input = ( speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input ) conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) conds = torch.stack(conds, dim=1) if self.average_conditioning_embeddings: conds = conds.mean(dim=1).unsqueeze(1) text_inputs, text_targets = self.build_aligned_inputs_and_targets( text_inputs, self.start_text_token, self.stop_text_token ) text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding text_logits = self.get_logits(conds, text_emb, self.text_head) loss_text = F.cross_entropy(text_logits, text_targets.long()) return loss_text.mean() def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None): """ Performs autoregressive modeling on only speech data. """ assert self.max_mel_tokens >= mel_codes.shape[1], f"{mel_codes.shape[1]}" # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by # chopping the inputs by the maximum actual length. max_mel_len = wav_lengths.max() // self.mel_length_compression mel_codes = F.pad(mel_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token) mel_codes = self.set_mel_padding(mel_codes, wav_lengths) if raw_mels is not None: raw_mels = raw_mels[:, :, : max_mel_len * 4] speech_conditioning_input = ( speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input ) conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) conds = torch.stack(conds, dim=1) if self.average_conditioning_embeddings: conds = conds.mean(dim=1).unsqueeze(1) mel_codes, mel_targets = self.build_aligned_inputs_and_targets( mel_codes, self.start_mel_token, self.stop_mel_token ) if raw_mels is not None: mel_inp = F.pad(raw_mels, (0, 4)) else: mel_inp = mel_codes mel_emb = self.mel_embedding(mel_inp) mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding mel_logits = self.get_logits(conds, mel_emb, self.mel_head) loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) return loss_mel.mean() def get_generator(self, fake_inputs, **hf_generate_kwargs): return self.inference_model.generate_stream( fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token, max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, do_stream=True, **hf_generate_kwargs, ) def compute_embeddings( self, speech_conditioning_latent, text_inputs, input_tokens=None, prompt_codes=None, pad_input_text=False, ): if pad_input_text and text_inputs.shape[1] < 250: text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) else: text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) print(" > Text inputs:", text_inputs) if prompt_codes is not None: prompt_codes = self.get_prompts(prompt_codes) prompt_emb = self.mel_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes) print(" > Prompt inputs:", prompt_codes) print(" > Prompt inputs shape:", prompt_codes.shape) emb = torch.cat([prompt_emb, emb], dim=1) if speech_conditioning_latent is not None: conds = speech_conditioning_latent.unsqueeze(1) emb = torch.cat([conds, emb], dim=1) self.inference_model.store_prefix_emb(emb) fake_inputs = torch.full( ( emb.shape[0], emb.shape[1] + 1, # +1 for the start_mel_token ), fill_value=1, dtype=torch.long, device=text_inputs.device, ) fake_inputs[:, -1] = self.start_mel_token if input_tokens is not None: fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) return fake_inputs def inference_speech( self, speech_conditioning_latent, text_inputs, input_tokens=None, prompt_codes=None, pad_input_text=False, **hf_generate_kwargs, ): if pad_input_text and text_inputs.shape[1] < 250: text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token) else: text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) print(" > Text inputs:", text_inputs) if prompt_codes is not None: prompt_codes = self.get_prompts(prompt_codes) prompt_emb = self.mel_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes) print(" > Prompt inputs:", prompt_codes) print(" > Prompt inputs shape:", prompt_codes.shape) emb = torch.cat([prompt_emb, emb], dim=1) if speech_conditioning_latent is not None: conds = speech_conditioning_latent.unsqueeze(1) emb = torch.cat([conds, emb], dim=1) self.inference_model.store_prefix_emb(emb) fake_inputs = torch.full( ( emb.shape[0], emb.shape[1] + 1, # +1 for the start_mel_token ), fill_value=1, dtype=torch.long, device=text_inputs.device, ) fake_inputs[:, -1] = self.start_mel_token if input_tokens is not None: fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1) gen = self.inference_model.generate( fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token, max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens, **hf_generate_kwargs, ) if "return_dict_in_generate" in hf_generate_kwargs: return gen.sequences[:, fake_inputs.shape[1] :], gen return gen[:, fake_inputs.shape[1] :] # Turns the (utterly insane) output of HF.generate() into a far more sane output: # [tensors(B,H,S,S)]. Outer=layers, B=batch,H=head,S=sequence def make_hf_generate_attentions_sane(self, attentions): layers = [[] for _ in range(len(attentions[0]))] full_attention_size = attentions[-1][0].shape[-1] for i, gen in enumerate(attentions): for j, lyr in enumerate(gen): layers[j].append(F.pad(lyr, (0, full_attention_size - lyr.shape[-1]))) catted = [] for lyr in layers: catted.append(torch.cat(lyr, dim=2)) return catted def convert_attentions_to_aligned_codes(self, text, attentions, codes, num_conds): """ This was an attempt to make some sense out of the attention matrix retrieved from the unified_voice model. Unfortunately, I can't use it for aligning text & voice. """ text_padding = num_conds + 2 num_text = text.shape[-1] num_context = num_text + text_padding assert num_context + 1 == attentions[0][0].shape[-1] attentions = self.make_hf_generate_attentions_sane(attentions) results = [torch.empty_like(codes) for _ in range(len(attentions))] for l, layer in enumerate(attentions): dec_context = layer[:, :, num_context:, :] # Mask out everything that isn't text (including the start token, which gets a LOT of attention) dec_context[:, :, :, : text_padding + 1] = 0 dec_context[:, :, :, num_context:] = 0 for h in range(dec_context.shape[1]): dec_context_indices = torch.argmax(dec_context[0, h], dim=-1) print(f"layer_{l};head_{h}: " + str(dec_context_indices)) for t, att_tok in enumerate(attentions): combined_attention_weights = torch.zeros((codes.shape[0], num_text), device=codes.device) for lyr in att_tok: token_to_text_attentions = lyr[:, :, -1, text_padding : (text_padding + num_text)].sum(dim=1) combined_attention_weights = combined_attention_weights + token_to_text_attentions break most_attended_text_token = combined_attention_weights.argmax(dim=-1) results[:, t] = most_attended_text_token eos_token_mask = codes != self.stop_mel_token return results * eos_token_mask @register_model def register_unified_voice_prompt(opt_net, opt): return UnifiedVoice(**opt_get(opt_net, ["kwargs"], {})) if __name__ == "__main__": gpt = UnifiedVoice( model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4, freeze_everything_but_position_embeddings=True, ) l = gpt( torch.randn(2, 3, 80, 800), torch.randint(high=256, size=(2, 120)), torch.tensor([32, 120]), torch.randint(high=8192, size=(2, 250)), torch.tensor([250 * 256, 195 * 256]), ) # gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))