# coding: utf-8 import torch from torch import nn from TTS.layers.tacotron import Encoder, Decoder, PostCBHG from TTS.layers.gst_layers import GST from TTS.utils.generic_utils import sequence_mask from TTS.models.tacotron import Tacotron class TacotronGST(Tacotron): def __init__(self, num_chars, num_speakers, r=5, linear_dim=1025, mel_dim=80, memory_size=5, attn_win=False, attn_norm="sigmoid", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, separate_stopnet=True): super().__init__(num_chars, num_speakers, r, linear_dim, mel_dim, memory_size, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, separate_stopnet) gst_embedding_dim = 256 decoder_dim = 512 if num_speakers > 1 else 256 proj_speaker_dim = 80 if num_speakers > 1 else 0 self.decoder = Decoder(decoder_dim, mel_dim, r, memory_size, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, separate_stopnet, proj_speaker_dim) self.gst = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=gst_embedding_dim) def forward(self, characters, text_lengths, mel_specs, speaker_ids=None): B = characters.size(0) mask = sequence_mask(text_lengths).to(characters.device) inputs = self.embedding(characters) self._init_states() self.compute_speaker_embedding(speaker_ids) if self.num_speakers > 1: inputs = self._add_speaker_embedding(inputs, self.speaker_embeddings) encoder_outputs = self.encoder(inputs) if self.num_speakers > 1: encoder_outputs = self._add_speaker_embedding(encoder_outputs, self.speaker_embeddings) gst_outputs = self.gst(mel_specs) encoder_outputs = self._add_speaker_embedding( encoder_outputs, gst_outputs) mel_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, mask, self.speaker_embeddings_projected) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) linear_outputs = self.postnet(mel_outputs) linear_outputs = self.last_linear(linear_outputs) return mel_outputs, linear_outputs, alignments, stop_tokens def inference(self, characters, speaker_ids=None, style_mel=None): B = characters.size(0) inputs = self.embedding(characters) self._init_states() self.compute_speaker_embedding(speaker_ids) if self.num_speakers > 1: inputs = self._add_speaker_embedding(inputs, self.speaker_embeddings) encoder_outputs = self.encoder(inputs) if self.num_speakers > 1: encoder_outputs = self._add_speaker_embedding(encoder_outputs, self.speaker_embeddings) if style_mel is not None: gst_outputs = self.gst(style_mel) gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1) encoder_outputs = self._add_speaker_embedding(encoder_outputs, gst_outputs) mel_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs, self.speaker_embeddings_projected) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) linear_outputs = self.postnet(mel_outputs) linear_outputs = self.last_linear(linear_outputs) return mel_outputs, linear_outputs, alignments, stop_tokens