{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "import sys\n", "import io\n", "import torch \n", "import time\n", "import numpy as np\n", "from collections import OrderedDict\n", "\n", "%pylab inline\n", "rcParams[\"figure.figsize\"] = (16,5)\n", "sys.path.append('/home/erogol/projects/')\n", "\n", "import librosa\n", "import librosa.display\n", "\n", "from torchviz import make_dot, make_dot_from_trace\n", "\n", "from TTS.models.tacotron import Tacotron \n", "from TTS.layers import *\n", "from TTS.utils.data import *\n", "from TTS.utils.audio import AudioProcessor\n", "from TTS.utils.generic_utils import load_config\n", "from TTS.utils.text import text_to_sequence\n", "\n", "import IPython\n", "from IPython.display import Audio\n", "from utils import *" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def tts(model, text, CONFIG, use_cuda, ap, figures=True):\n", " t_1 = time.time()\n", " waveform, alignment, spectrogram = create_speech(model, text, CONFIG, use_cuda, ap) \n", " print(\" > Run-time: {}\".format(time.time() - t_1))\n", " if figures: \n", " visualize(alignment, spectrogram, CONFIG) \n", " IPython.display.display(Audio(waveform, rate=CONFIG.sample_rate)) \n", " return alignment, spectrogram" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Set constants\n", "ROOT_PATH = '/data/shared/erogol_models/March-28-2018_06:24PM/'\n", "MODEL_PATH = ROOT_PATH + '/best_model.pth.tar'\n", "CONFIG_PATH = ROOT_PATH + '/config.json'\n", "OUT_FOLDER = ROOT_PATH + '/test/'\n", "CONFIG = load_config(CONFIG_PATH)\n", "use_cuda = False" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# load the model\n", "model = Tacotron(CONFIG.embedding_size, CONFIG.num_mels, CONFIG.num_freq, CONFIG.r)\n", "\n", "# load the audio processor\n", "ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db,\n", " CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.preemphasis,\n", " CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, griffin_lim_iters=80) \n", "\n", "\n", "# load model state\n", "if use_cuda:\n", " cp = torch.load(MODEL_PATH)\n", "else:\n", " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", "\n", "# # small trick to remove DataParallel wrapper\n", "new_state_dict = OrderedDict()\n", "for k, v in cp['model'].items():\n", " name = k[7:] # remove `module.`\n", " new_state_dict[name] = v\n", "cp['model'] = new_state_dict\n", "\n", "# load the model\n", "model.load_state_dict(cp['model'])\n", "if use_cuda:\n", " model.cuda()\n", "model.eval()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### EXAMPLES FROM TRAINING SET" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "df = pd.read_csv('/data/shared/KeithIto/LJSpeech-1.0/metadata.csv', delimiter='|')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "sentence = df.iloc[120, 1].lower().replace(',','')\n", "print(sentence)\n", "align = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### NEW EXAMPLES" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "sentence = \"Will Donald Trump Jr. offer the country’s business leaders a peek into a new U.S.-India relationship in trade? Defense? Terrorism?\"\n", "model.decoder.max_decoder_steps = 300\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }