#!/usr/bin/env python3 """Command line interface.""" import argparse import contextlib import logging import sys from argparse import RawTextHelpFormatter # pylint: disable=redefined-outer-name, unused-argument from TTS.utils.generic_utils import ConsoleFormatter, setup_logger logger = logging.getLogger(__name__) description = """ Synthesize speech on the command line. You can either use your trained model or choose a model from the provided list. - List provided models: ```sh tts --list_models ``` - Get model information. Use the names obtained from `--list_models`. ```sh tts --model_info_by_name "///" ``` For example: ```sh tts --model_info_by_name tts_models/tr/common-voice/glow-tts tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 ``` #### Single speaker models - Run TTS with the default model (`tts_models/en/ljspeech/tacotron2-DDC`): ```sh tts --text "Text for TTS" --out_path output/path/speech.wav ``` - Run TTS and pipe out the generated TTS wav file data: ```sh tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay ``` - Run a TTS model with its default vocoder model: ```sh tts --text "Text for TTS" \\ --model_name "///" \\ --out_path output/path/speech.wav ``` For example: ```sh tts --text "Text for TTS" \\ --model_name "tts_models/en/ljspeech/glow-tts" \\ --out_path output/path/speech.wav ``` - Run with specific TTS and vocoder models from the list. Note that not every vocoder is compatible with every TTS model. ```sh tts --text "Text for TTS" \\ --model_name "///" \\ --vocoder_name "///" \\ --out_path output/path/speech.wav ``` For example: ```sh tts --text "Text for TTS" \\ --model_name "tts_models/en/ljspeech/glow-tts" \\ --vocoder_name "vocoder_models/en/ljspeech/univnet" \\ --out_path output/path/speech.wav ``` - Run your own TTS model (using Griffin-Lim Vocoder): ```sh tts --text "Text for TTS" \\ --model_path path/to/model.pth \\ --config_path path/to/config.json \\ --out_path output/path/speech.wav ``` - Run your own TTS and Vocoder models: ```sh tts --text "Text for TTS" \\ --model_path path/to/model.pth \\ --config_path path/to/config.json \\ --out_path output/path/speech.wav \\ --vocoder_path path/to/vocoder.pth \\ --vocoder_config_path path/to/vocoder_config.json ``` #### Multi-speaker models - List the available speakers and choose a `` among them: ```sh tts --model_name "//" --list_speaker_idxs ``` - Run the multi-speaker TTS model with the target speaker ID: ```sh tts --text "Text for TTS." --out_path output/path/speech.wav \\ --model_name "//" --speaker_idx ``` - Run your own multi-speaker TTS model: ```sh tts --text "Text for TTS" --out_path output/path/speech.wav \\ --model_path path/to/model.pth --config_path path/to/config.json \\ --speakers_file_path path/to/speaker.json --speaker_idx ``` #### Voice conversion models ```sh tts --out_path output/path/speech.wav --model_name "//" \\ --source_wav --target_wav ``` """ def parse_args() -> argparse.Namespace: """Parse arguments.""" parser = argparse.ArgumentParser( description=description.replace(" ```\n", ""), formatter_class=RawTextHelpFormatter, ) parser.add_argument( "--list_models", action="store_true", help="list available pre-trained TTS and vocoder models.", ) parser.add_argument( "--model_info_by_idx", type=str, default=None, help="model info using query format: /", ) parser.add_argument( "--model_info_by_name", type=str, default=None, help="model info using query format: ///", ) parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") # Args for running pre-trained TTS models. parser.add_argument( "--model_name", type=str, default="tts_models/en/ljspeech/tacotron2-DDC", help="Name of one of the pre-trained TTS models in format //", ) parser.add_argument( "--vocoder_name", type=str, default=None, help="Name of one of the pre-trained vocoder models in format //", ) # Args for running custom models parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") parser.add_argument( "--model_path", type=str, default=None, help="Path to model file.", ) parser.add_argument( "--out_path", type=str, default="tts_output.wav", help="Output wav file path.", ) parser.add_argument("--use_cuda", action="store_true", help="Run model on CUDA.") parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu") parser.add_argument( "--vocoder_path", type=str, help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", default=None, ) parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) parser.add_argument( "--encoder_path", type=str, help="Path to speaker encoder model file.", default=None, ) parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) parser.add_argument( "--pipe_out", help="stdout the generated TTS wav file for shell pipe.", action="store_true", ) # args for multi-speaker synthesis parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) parser.add_argument( "--speaker_idx", type=str, help="Target speaker ID for a multi-speaker TTS model.", default=None, ) parser.add_argument( "--language_idx", type=str, help="Target language ID for a multi-lingual TTS model.", default=None, ) parser.add_argument( "--speaker_wav", nargs="+", help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", default=None, ) parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) parser.add_argument( "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None ) parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) parser.add_argument( "--list_speaker_idxs", help="List available speaker ids for the defined multi-speaker model.", action="store_true", ) parser.add_argument( "--list_language_idxs", help="List available language ids for the defined multi-lingual model.", action="store_true", ) # aux args parser.add_argument( "--reference_wav", type=str, help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", default=None, ) parser.add_argument( "--reference_speaker_idx", type=str, help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", default=None, ) parser.add_argument( "--progress_bar", action=argparse.BooleanOptionalAction, help="Show a progress bar for the model download.", default=True, ) # voice conversion args parser.add_argument( "--source_wav", type=str, default=None, help="Original audio file to convert in the voice of the target_wav", ) parser.add_argument( "--target_wav", type=str, default=None, help="Target audio file to convert in the voice of the source_wav", ) parser.add_argument( "--voice_dir", type=str, default=None, help="Voice dir for tortoise model", ) args = parser.parse_args() # print the description if either text or list_models is not set check_args = [ args.text, args.list_models, args.list_speaker_idxs, args.list_language_idxs, args.reference_wav, args.model_info_by_idx, args.model_info_by_name, args.source_wav, args.target_wav, ] if not any(check_args): parser.parse_args(["-h"]) return args def main() -> None: """Entry point for `tts` command line interface.""" args = parse_args() stream = sys.stderr if args.pipe_out else sys.stdout setup_logger("TTS", level=logging.INFO, stream=stream, formatter=ConsoleFormatter()) pipe_out = sys.stdout if args.pipe_out else None with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout): # Late-import to make things load faster from TTS.api import TTS from TTS.utils.manage import ModelManager # load model manager manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=args.progress_bar) tts_path = None tts_config_path = None speakers_file_path = None language_ids_file_path = None vocoder_path = None vocoder_config_path = None encoder_path = None encoder_config_path = None vc_path = None vc_config_path = None model_dir = None # 1) List pre-trained TTS models if args.list_models: manager.list_models() sys.exit() # 2) Info about pre-trained TTS models (without loading a model) if args.model_info_by_idx: model_query = args.model_info_by_idx manager.model_info_by_idx(model_query) sys.exit() if args.model_info_by_name: model_query_full_name = args.model_info_by_name manager.model_info_by_full_name(model_query_full_name) sys.exit() # 3) Load a model for further info or TTS/VC device = args.device if args.use_cuda: device = "cuda" # A local model will take precedence if specified via modeL_path model_name = args.model_name if args.model_path is None else None api = TTS( model_name=model_name, model_path=args.model_path, config_path=args.config_path, vocoder_name=args.vocoder_name, vocoder_path=args.vocoder_path, vocoder_config_path=args.vocoder_config_path, encoder_path=args.encoder_path, encoder_config_path=args.encoder_config_path, speakers_file_path=args.speakers_file_path, language_ids_file_path=args.language_ids_file_path, progress_bar=args.progress_bar, ).to(device) # query speaker ids of a multi-speaker model. if args.list_speaker_idxs: if not api.is_multi_speaker: logger.info("Model only has a single speaker.") return logger.info( "Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." ) logger.info(api.speakers) return # query langauge ids of a multi-lingual model. if args.list_language_idxs: if not api.is_multi_lingual: logger.info("Monolingual model.") return logger.info( "Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." ) logger.info(api.languages) return # check the arguments against a multi-speaker model. if api.is_multi_speaker and (not args.speaker_idx and not args.speaker_wav): logger.error( "Looks like you use a multi-speaker model. Define `--speaker_idx` to " "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." ) return # RUN THE SYNTHESIS if args.text: logger.info("Text: %s", args.text) if args.text is not None: api.tts_to_file( text=args.text, speaker=args.speaker_idx, language=args.language_idx, speaker_wav=args.speaker_wav, pipe_out=pipe_out, file_path=args.out_path, reference_wav=args.reference_wav, style_wav=args.capacitron_style_wav, style_text=args.capacitron_style_text, reference_speaker_name=args.reference_speaker_idx, voice_dir=args.voice_dir, ) logger.info("Saved TTS output to %s", args.out_path) elif args.source_wav is not None and args.target_wav is not None: api.voice_conversion_to_file( source_wav=args.source_wav, target_wav=args.target_wav, file_path=args.out_path, pipe_out=pipe_out, ) logger.info("Saved VC output to %s", args.out_path) if __name__ == "__main__": main()