import os import re import xml.etree.ElementTree as ET from glob import glob from pathlib import Path from typing import List from tqdm import tqdm ######################## # DATASETS ######################## def tweb(root_path, meta_file): """Normalize TWEB dataset. https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset """ txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "tweb" with open(txt_file, "r") as ttf: for line in ttf: cols = line.split("\t") wav_file = os.path.join(root_path, cols[0] + ".wav") text = cols[1] items.append([text, wav_file, speaker_name]) return items def mozilla(root_path, meta_file): """Normalizes Mozilla meta data files to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "mozilla" with open(txt_file, "r") as ttf: for line in ttf: cols = line.split("|") wav_file = cols[1].strip() text = cols[0].strip() wav_file = os.path.join(root_path, "wavs", wav_file) items.append([text, wav_file, speaker_name]) return items def mozilla_de(root_path, meta_file): """Normalizes Mozilla meta data files to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "mozilla" with open(txt_file, "r", encoding="ISO 8859-1") as ttf: for line in ttf: cols = line.strip().split("|") wav_file = cols[0].strip() text = cols[1].strip() folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL" wav_file = os.path.join(root_path, folder_name, wav_file) items.append([text, wav_file, speaker_name]) return items def mailabs(root_path, meta_files=None): """Normalizes M-AI-Labs meta data files to TTS format""" speaker_regex = re.compile("by_book/(male|female)/(?P[^/]+)/") if meta_files is None: csv_files = glob(root_path + "/**/metadata.csv", recursive=True) else: csv_files = meta_files # meta_files = [f.strip() for f in meta_files.split(",")] items = [] for csv_file in csv_files: txt_file = os.path.join(root_path, csv_file) folder = os.path.dirname(txt_file) # determine speaker based on folder structure... speaker_name_match = speaker_regex.search(txt_file) if speaker_name_match is None: continue speaker_name = speaker_name_match.group("speaker_name") print(" | > {}".format(csv_file)) with open(txt_file, "r") as ttf: for line in ttf: cols = line.split("|") if meta_files is None: wav_file = os.path.join(folder, "wavs", cols[0] + ".wav") else: wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav") if os.path.isfile(wav_file): text = cols[1].strip() items.append([text, wav_file, speaker_name]) else: raise RuntimeError("> File %s does not exist!" % (wav_file)) return items def ljspeech(root_path, meta_file): """Normalizes the LJSpeech meta data file to TTS format https://keithito.com/LJ-Speech-Dataset/""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "ljspeech" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") text = cols[1] items.append([text, wav_file, speaker_name]) return items def sam_accenture(root_path, meta_file): """Normalizes the sam-accenture meta data file to TTS format https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files""" xml_file = os.path.join(root_path, "voice_over_recordings", meta_file) xml_root = ET.parse(xml_file).getroot() items = [] speaker_name = "sam_accenture" for item in xml_root.findall("./fileid"): text = item.text wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav") if not os.path.exists(wav_file): print(f" [!] {wav_file} in metafile does not exist. Skipping...") continue items.append([text, wav_file, speaker_name]) return items def ruslan(root_path, meta_file): """Normalizes the RUSLAN meta data file to TTS format https://ruslan-corpus.github.io/""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "ljspeech" with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav") text = cols[1] items.append([text, wav_file, speaker_name]) return items def css10(root_path, meta_file): """Normalizes the CSS10 dataset file to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "ljspeech" with open(txt_file, "r") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, cols[0]) text = cols[1] items.append([text, wav_file, speaker_name]) return items def nancy(root_path, meta_file): """Normalizes the Nancy meta data file to TTS format""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "nancy" with open(txt_file, "r") as ttf: for line in ttf: utt_id = line.split()[1] text = line[line.find('"') + 1 : line.rfind('"') - 1] wav_file = os.path.join(root_path, "wavn", utt_id + ".wav") items.append([text, wav_file, speaker_name]) return items def common_voice(root_path, meta_file): """Normalize the common voice meta data file to TTS format.""" txt_file = os.path.join(root_path, meta_file) items = [] with open(txt_file, "r") as ttf: for line in ttf: if line.startswith("client_id"): continue cols = line.split("\t") text = cols[2] speaker_name = cols[0] wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav")) items.append([text, wav_file, "MCV_" + speaker_name]) return items def libri_tts(root_path, meta_files=None): """https://ai.google/tools/datasets/libri-tts/""" items = [] if meta_files is None: meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True) for meta_file in meta_files: _meta_file = os.path.basename(meta_file).split(".")[0] speaker_name = _meta_file.split("_")[0] chapter_id = _meta_file.split("_")[1] _root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}") with open(meta_file, "r") as ttf: for line in ttf: cols = line.split("\t") wav_file = os.path.join(_root_path, cols[0] + ".wav") text = cols[1] items.append([text, wav_file, "LTTS_" + speaker_name]) for item in items: assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}" return items def custom_turkish(root_path, meta_file): txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "turkish-female" skipped_files = [] with open(txt_file, "r", encoding="utf-8") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav") if not os.path.exists(wav_file): skipped_files.append(wav_file) continue text = cols[1].strip() items.append([text, wav_file, speaker_name]) print(f" [!] {len(skipped_files)} files skipped. They don't exist...") return items # ToDo: add the dataset link when the dataset is released publicly def brspeech(root_path, meta_file): """BRSpeech 3.0 beta""" txt_file = os.path.join(root_path, meta_file) items = [] with open(txt_file, "r") as ttf: for line in ttf: if line.startswith("wav_filename"): continue cols = line.split("|") wav_file = os.path.join(root_path, cols[0]) text = cols[2] speaker_name = cols[3] items.append([text, wav_file, speaker_name]) return items def vctk(root_path, meta_files=None, wavs_path="wav48"): """homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz""" test_speakers = meta_files items = [] meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) for meta_file in meta_files: _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) file_id = txt_file.split(".")[0] if isinstance(test_speakers, list): # if is list ignore this speakers ids if speaker_id in test_speakers: continue with open(meta_file) as file_text: text = file_text.readlines()[0] wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav") items.append([text, wav_file, "VCTK_" + speaker_id]) return items def vctk_slim(root_path, meta_files=None, wavs_path="wav48"): """homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz""" items = [] txt_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) for text_file in txt_files: _, speaker_id, txt_file = os.path.relpath(text_file, root_path).split(os.sep) file_id = txt_file.split(".")[0] if isinstance(meta_files, list): # if is list ignore this speakers ids if speaker_id in meta_files: continue wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav") items.append([None, wav_file, "VCTK_" + speaker_id]) return items # ======================================== VOX CELEB =========================================== def voxceleb2(root_path, meta_file=None): """ :param meta_file Used only for consistency with load_meta_data api """ return _voxcel_x(root_path, meta_file, voxcel_idx="2") def voxceleb1(root_path, meta_file=None): """ :param meta_file Used only for consistency with load_meta_data api """ return _voxcel_x(root_path, meta_file, voxcel_idx="1") def _voxcel_x(root_path, meta_file, voxcel_idx): assert voxcel_idx in ["1", "2"] expected_count = 148_000 if voxcel_idx == "1" else 1_000_000 voxceleb_path = Path(root_path) cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv" cache_to.parent.mkdir(exist_ok=True) # if not exists meta file, crawl recursively for 'wav' files if meta_file is not None: with open(str(meta_file), "r") as f: return [x.strip().split("|") for x in f.readlines()] elif not cache_to.exists(): cnt = 0 meta_data = [] wav_files = voxceleb_path.rglob("**/*.wav") for path in tqdm( wav_files, desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.", total=expected_count, ): speaker_id = str(Path(path).parent.parent.stem) assert speaker_id.startswith("id") text = None # VoxCel does not provide transciptions, and they are not needed for training the SE meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n") cnt += 1 with open(str(cache_to), "w") as f: f.write("".join(meta_data)) if cnt < expected_count: raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}") with open(str(cache_to), "r") as f: return [x.strip().split("|") for x in f.readlines()] def baker(root_path: str, meta_file: str) -> List[List[str]]: """Normalizes the Baker meta data file to TTS format Args: root_path (str): path to the baker dataset meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence Returns: List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences """ txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "baker" with open(txt_file, "r") as ttf: for line in ttf: wav_name, text = line.rstrip("\n").split("|") wav_path = os.path.join(root_path, "clips_22", wav_name) items.append([text, wav_path, speaker_name]) return items def kokoro(root_path, meta_file): """Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset""" txt_file = os.path.join(root_path, meta_file) items = [] speaker_name = "kokoro" with open(txt_file, "r") as ttf: for line in ttf: cols = line.split("|") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") text = cols[2].replace(" ", "") items.append([text, wav_file, speaker_name]) return items