coqui-tts/TTS/tts/layers/vits/networks.py

213 lines
6.8 KiB
Python

import math
import torch
from torch import nn
from TTS.tts.layers.glow_tts.glow import WN
from TTS.tts.utils.helpers import sequence_mask
LRELU_SLOPE = 0.1
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class ResidualCouplingBlock(nn.Module):
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
num_layers,
dropout_p=0,
cond_channels=0,
mean_only=False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.half_channels = channels // 2
self.mean_only = mean_only
# input layer
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
# coupling layers
self.enc = WN(
hidden_channels,
hidden_channels,
kernel_size,
dilation_rate,
num_layers,
dropout_p=dropout_p,
c_in_channels=cond_channels,
)
# output layer
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
"""
Note:
Set `reverse` to True for inference.
Shapes:
- x: :math:`[B, C, T]`
- x_mask: :math:`[B, 1, T]`
- g: :math:`[B, C, 1]`
"""
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, log_scale = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
log_scale = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(log_scale) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(log_scale, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-log_scale) * x_mask
x = torch.cat([x0, x1], 1)
return x
class ResidualCouplingBlocks(nn.Module):
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
num_layers: int,
num_flows=4,
cond_channels=0,
):
"""Redisual Coupling blocks for VITS flow layers.
Args:
channels (int): Number of input and output tensor channels.
hidden_channels (int): Number of hidden network channels.
kernel_size (int): Kernel size of the WaveNet layers.
dilation_rate (int): Dilation rate of the WaveNet layers.
num_layers (int): Number of the WaveNet layers.
num_flows (int, optional): Number of Residual Coupling blocks. Defaults to 4.
cond_channels (int, optional): Number of channels of the conditioning tensor. Defaults to 0.
"""
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.num_layers = num_layers
self.num_flows = num_flows
self.cond_channels = cond_channels
self.flows = nn.ModuleList()
for _ in range(num_flows):
self.flows.append(
ResidualCouplingBlock(
channels,
hidden_channels,
kernel_size,
dilation_rate,
num_layers,
cond_channels=cond_channels,
mean_only=True,
)
)
def forward(self, x, x_mask, g=None, reverse=False):
"""
Note:
Set `reverse` to True for inference.
Shapes:
- x: :math:`[B, C, T]`
- x_mask: :math:`[B, 1, T]`
- g: :math:`[B, C, 1]`
"""
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
x = torch.flip(x, [1])
else:
for flow in reversed(self.flows):
x = torch.flip(x, [1])
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
num_layers: int,
cond_channels=0,
):
"""Posterior Encoder of VITS model.
::
x -> conv1x1() -> WaveNet() (non-causal) -> conv1x1() -> split() -> [m, s] -> sample(m, s) -> z
Args:
in_channels (int): Number of input tensor channels.
out_channels (int): Number of output tensor channels.
hidden_channels (int): Number of hidden channels.
kernel_size (int): Kernel size of the WaveNet convolution layers.
dilation_rate (int): Dilation rate of the WaveNet layers.
num_layers (int): Number of the WaveNet layers.
cond_channels (int, optional): Number of conditioning tensor channels. Defaults to 0.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.num_layers = num_layers
self.cond_channels = cond_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WN(
hidden_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels=cond_channels
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
"""
Shapes:
- x: :math:`[B, C, T]`
- x_lengths: :math:`[B, 1]`
- g: :math:`[B, C, 1]`
"""
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
mean, log_scale = torch.split(stats, self.out_channels, dim=1)
z = (mean + torch.randn_like(mean) * torch.exp(log_scale)) * x_mask
return z, mean, log_scale, x_mask