mirror of https://github.com/coqui-ai/TTS.git
99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
import os
|
|
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from TTS.config.shared_configs import BaseAudioConfig
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.configs.tacotron_config import TacotronConfig
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.tacotron import Tacotron
|
|
from TTS.tts.utils.speakers import SpeakerManager
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
|
|
|
audio_config = BaseAudioConfig(
|
|
sample_rate=22050,
|
|
resample=True, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training.
|
|
do_trim_silence=True,
|
|
trim_db=23.0,
|
|
signal_norm=False,
|
|
mel_fmin=0.0,
|
|
mel_fmax=8000,
|
|
spec_gain=1.0,
|
|
log_func="np.log",
|
|
ref_level_db=20,
|
|
preemphasis=0.0,
|
|
)
|
|
|
|
config = TacotronConfig( # This is the config that is saved for the future use
|
|
audio=audio_config,
|
|
batch_size=48,
|
|
eval_batch_size=16,
|
|
num_loader_workers=4,
|
|
num_eval_loader_workers=4,
|
|
precompute_num_workers=4,
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
r=6,
|
|
gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
|
|
double_decoder_consistency=True,
|
|
epochs=1000,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
|
print_step=25,
|
|
print_eval=False,
|
|
mixed_precision=True,
|
|
min_text_len=0,
|
|
max_text_len=500,
|
|
min_audio_len=0,
|
|
max_audio_len=44000 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
use_speaker_embedding=True, # set this to enable multi-sepeaker training
|
|
)
|
|
|
|
## INITIALIZE THE AUDIO PROCESSOR
|
|
# Audio processor is used for feature extraction and audio I/O.
|
|
# It mainly serves to the dataloader and the training loggers.
|
|
ap = AudioProcessor.init_from_config(config)
|
|
|
|
# INITIALIZE THE TOKENIZER
|
|
# Tokenizer is used to convert text to sequences of token IDs.
|
|
# If characters are not defined in the config, default characters are passed to the config
|
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
|
|
|
# LOAD DATA SAMPLES
|
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
|
# You can define your custom sample loader returning the list of samples.
|
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
|
train_samples, eval_samples = load_tts_samples(
|
|
dataset_config,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
# init speaker manager for multi-speaker training
|
|
# it mainly handles speaker-id to speaker-name for the model and the data-loader
|
|
speaker_manager = SpeakerManager()
|
|
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
|
|
|
|
# init model
|
|
model = Tacotron(config, ap, tokenizer, speaker_manager)
|
|
|
|
# INITIALIZE THE TRAINER
|
|
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training,
|
|
# distributed training, etc.
|
|
trainer = Trainer(
|
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
|
)
|
|
|
|
# AND... 3,2,1... 🚀
|
|
trainer.fit()
|