mirror of https://github.com/coqui-ai/TTS.git
221 lines
7.1 KiB
Python
Executable File
221 lines
7.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import string
|
|
from argparse import RawTextHelpFormatter
|
|
# pylint: disable=redefined-outer-name, unused-argument
|
|
from pathlib import Path
|
|
|
|
from TTS.utils.manage import ModelManager
|
|
from TTS.utils.synthesizer import Synthesizer
|
|
|
|
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
|
return True
|
|
if v.lower() in ('no', 'false', 'f', 'n', '0'):
|
|
return False
|
|
raise argparse.ArgumentTypeError('Boolean value expected.')
|
|
|
|
|
|
def main():
|
|
# pylint: disable=bad-continuation
|
|
parser = argparse.ArgumentParser(description='''Synthesize speech on command line.\n\n'''
|
|
|
|
'''You can either use your trained model or choose a model from the provided list.\n'''\
|
|
|
|
'''
|
|
Example runs:
|
|
|
|
# list provided models
|
|
./TTS/bin/synthesize.py --list_models
|
|
|
|
# run tts with default models.
|
|
./TTS/bin synthesize.py --text "Text for TTS"
|
|
|
|
# run a model from the list
|
|
./TTS/bin/synthesize.py --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" --vocoder_name "<language>/<dataset>/<model_name>" --output_path
|
|
|
|
# run your own TTS model (Using Griffin-Lim Vocoder)
|
|
./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/model.pth.tar --config_path path/to/config.json --out_path output/path/speech.wav
|
|
|
|
# run your own TTS and Vocoder models
|
|
./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth.tar --out_path output/path/speech.wav
|
|
--vocoder_path path/to/vocoder.pth.tar --vocoder_config_path path/to/vocoder_config.json
|
|
|
|
''',
|
|
formatter_class=RawTextHelpFormatter)
|
|
|
|
parser.add_argument(
|
|
'--list_models',
|
|
type=str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=False,
|
|
help='list available pre-trained tts and vocoder models.'
|
|
)
|
|
parser.add_argument(
|
|
'--text',
|
|
type=str,
|
|
default=None,
|
|
help='Text to generate speech.'
|
|
)
|
|
|
|
# Args for running pre-trained TTS models.
|
|
parser.add_argument(
|
|
'--model_name',
|
|
type=str,
|
|
default="tts_models/en/ljspeech/speedy-speech-wn",
|
|
help=
|
|
'Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>'
|
|
)
|
|
parser.add_argument(
|
|
'--vocoder_name',
|
|
type=str,
|
|
default="vocoder_models/en/ljspeech/mulitband-melgan",
|
|
help=
|
|
'Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>'
|
|
)
|
|
|
|
# Args for running custom models
|
|
parser.add_argument(
|
|
'--config_path',
|
|
default=None,
|
|
type=str,
|
|
help='Path to model config file.'
|
|
)
|
|
parser.add_argument(
|
|
'--model_path',
|
|
type=str,
|
|
default=None,
|
|
help='Path to model file.',
|
|
)
|
|
parser.add_argument(
|
|
'--out_path',
|
|
type=str,
|
|
default=Path(__file__).resolve().parent,
|
|
help='Path to save final wav file. Wav file will be named as the given text.',
|
|
)
|
|
parser.add_argument(
|
|
'--use_cuda',
|
|
type=bool,
|
|
help='Run model on CUDA.',
|
|
default=False
|
|
)
|
|
parser.add_argument(
|
|
'--vocoder_path',
|
|
type=str,
|
|
help=
|
|
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
'--vocoder_config_path',
|
|
type=str,
|
|
help='Path to vocoder model config file.',
|
|
default=None)
|
|
|
|
# args for multi-speaker synthesis
|
|
parser.add_argument(
|
|
'--speakers_json',
|
|
type=str,
|
|
help="JSON file for multi-speaker model.",
|
|
default=None)
|
|
parser.add_argument(
|
|
'--speaker_idx',
|
|
type=str,
|
|
help="if the tts model is trained with x-vectors, then speaker_idx is a file present in speakers.json else speaker_idx is the speaker id corresponding to a speaker in the speaker embedding layer.",
|
|
default=None)
|
|
parser.add_argument(
|
|
'--gst_style',
|
|
help="Wav path file for GST stylereference.",
|
|
default=None)
|
|
|
|
# aux args
|
|
parser.add_argument(
|
|
'--save_spectogram',
|
|
type=bool,
|
|
help="If true save raw spectogram for further (vocoder) processing in out_path.",
|
|
default=False)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# load model manager
|
|
path = Path(__file__).parent / "../.models.json"
|
|
manager = ModelManager(path)
|
|
|
|
model_path = None
|
|
config_path = None
|
|
vocoder_path = None
|
|
vocoder_config_path = None
|
|
|
|
# CASE1: list pre-trained TTS models
|
|
if args.list_models:
|
|
manager.list_models()
|
|
sys.exit()
|
|
|
|
# CASE2: load pre-trained models
|
|
if args.model_name is not None:
|
|
model_path, config_path = manager.download_model(args.model_name)
|
|
|
|
if args.vocoder_name is not None:
|
|
vocoder_path, vocoder_config_path = manager.download_model(args.vocoder_name)
|
|
|
|
# CASE3: load custome models
|
|
if args.model_path is not None:
|
|
model_path = args.model_path
|
|
config_path = args.config_path
|
|
|
|
if args.vocoder_path is not None:
|
|
vocoder_path = args.vocoder_path
|
|
vocoder_config_path = args.vocoder_config_path
|
|
|
|
# RUN THE SYNTHESIS
|
|
# load models
|
|
synthesizer = Synthesizer(model_path, config_path, vocoder_path, vocoder_config_path, args.use_cuda)
|
|
|
|
print(" > Text: {}".format(args.text))
|
|
|
|
# # handle multi-speaker setting
|
|
# if not model_config.use_external_speaker_embedding_file and args.speaker_idx is not None:
|
|
# if args.speaker_idx.isdigit():
|
|
# args.speaker_idx = int(args.speaker_idx)
|
|
# else:
|
|
# args.speaker_idx = None
|
|
# else:
|
|
# args.speaker_idx = None
|
|
|
|
# if args.gst_style is None:
|
|
# if 'gst' in model_config.keys() and model_config.gst['gst_style_input'] is not None:
|
|
# gst_style = model_config.gst['gst_style_input']
|
|
# else:
|
|
# gst_style = None
|
|
# else:
|
|
# # check if gst_style string is a dict, if is dict convert else use string
|
|
# try:
|
|
# gst_style = json.loads(args.gst_style)
|
|
# if max(map(int, gst_style.keys())) >= model_config.gst['gst_style_tokens']:
|
|
# raise RuntimeError("The highest value of the gst_style dictionary key must be less than the number of GST Tokens, \n Highest dictionary key value: {} \n Number of GST tokens: {}".format(max(map(int, gst_style.keys())), model_config.gst['gst_style_tokens']))
|
|
# except ValueError:
|
|
# gst_style = args.gst_style
|
|
|
|
# kick it
|
|
wav = synthesizer.tts(args.text)
|
|
|
|
# save the results
|
|
file_name = args.text.replace(" ", "_")[0:20]
|
|
file_name = file_name.translate(
|
|
str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
|
|
out_path = os.path.join(args.out_path, file_name)
|
|
print(" > Saving output to {}".format(out_path))
|
|
synthesizer.save_wav(wav, out_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|