coqui-tts/TTS/tts/utils/synthesis.py

289 lines
9.0 KiB
Python

from typing import Dict
import numpy as np
import torch
from torch import nn
def numpy_to_torch(np_array, dtype, cuda=False):
if np_array is None:
return None
tensor = torch.as_tensor(np_array, dtype=dtype)
if cuda:
return tensor.cuda()
return tensor
def compute_style_mel(style_wav, ap, cuda=False):
style_mel = torch.FloatTensor(ap.melspectrogram(ap.load_wav(style_wav, sr=ap.sample_rate))).unsqueeze(0)
if cuda:
return style_mel.cuda()
return style_mel
def run_model_torch(
model: nn.Module,
inputs: torch.Tensor,
speaker_id: int = None,
style_mel: torch.Tensor = None,
d_vector: torch.Tensor = None,
language_id: torch.Tensor = None,
) -> Dict:
"""Run a torch model for inference. It does not support batch inference.
Args:
model (nn.Module): The model to run inference.
inputs (torch.Tensor): Input tensor with character ids.
speaker_id (int, optional): Input speaker ids for multi-speaker models. Defaults to None.
style_mel (torch.Tensor, optional): Spectrograms used for voice styling . Defaults to None.
d_vector (torch.Tensor, optional): d-vector for multi-speaker models . Defaults to None.
Returns:
Dict: model outputs.
"""
input_lengths = torch.tensor(inputs.shape[1:2]).to(inputs.device)
if hasattr(model, "module"):
_func = model.module.inference
else:
_func = model.inference
outputs = _func(
inputs,
aux_input={
"x_lengths": input_lengths,
"speaker_ids": speaker_id,
"d_vectors": d_vector,
"style_mel": style_mel,
"language_ids": language_id,
},
)
return outputs
def trim_silence(wav, ap):
return wav[: ap.find_endpoint(wav)]
def inv_spectrogram(postnet_output, ap, CONFIG):
if CONFIG.model.lower() in ["tacotron"]:
wav = ap.inv_spectrogram(postnet_output.T)
else:
wav = ap.inv_melspectrogram(postnet_output.T)
return wav
def id_to_torch(aux_id, cuda=False):
if aux_id is not None:
aux_id = np.asarray(aux_id)
aux_id = torch.from_numpy(aux_id)
if cuda:
return aux_id.cuda()
return aux_id
def embedding_to_torch(d_vector, cuda=False):
if d_vector is not None:
d_vector = np.asarray(d_vector)
d_vector = torch.from_numpy(d_vector).type(torch.FloatTensor)
d_vector = d_vector.squeeze().unsqueeze(0)
if cuda:
return d_vector.cuda()
return d_vector
# TODO: perform GL with pytorch for batching
def apply_griffin_lim(inputs, input_lens, CONFIG, ap):
"""Apply griffin-lim to each sample iterating throught the first dimension.
Args:
inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size.
input_lens (Tensor or np.Array): 1D array of sample lengths.
CONFIG (Dict): TTS config.
ap (AudioProcessor): TTS audio processor.
"""
wavs = []
for idx, spec in enumerate(inputs):
wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length # inverse librosa padding
wav = inv_spectrogram(spec, ap, CONFIG)
# assert len(wav) == wav_len, f" [!] wav lenght: {len(wav)} vs expected: {wav_len}"
wavs.append(wav[:wav_len])
return wavs
def synthesis(
model,
text,
CONFIG,
use_cuda,
speaker_id=None,
style_wav=None,
use_griffin_lim=False,
do_trim_silence=False,
d_vector=None,
language_id=None,
):
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to
the vocoder model.
Args:
model (TTS.tts.models):
The TTS model to synthesize audio with.
text (str):
The input text to convert to speech.
CONFIG (Coqpit):
Model configuration.
use_cuda (bool):
Enable/disable CUDA.
speaker_id (int):
Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None.
style_wav (str | Dict[str, float]):
Path or tensor to/of a waveform used for computing the style embedding. Defaults to None.
enable_eos_bos_chars (bool):
enable special chars for end of sentence and start of sentence. Defaults to False.
do_trim_silence (bool):
trim silence after synthesis. Defaults to False.
d_vector (torch.Tensor):
d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None.
language_id (int):
Language ID passed to the language embedding layer in multi-langual model. Defaults to None.
"""
# GST processing
style_mel = None
if CONFIG.has("gst") and CONFIG.gst and style_wav is not None:
if isinstance(style_wav, dict):
style_mel = style_wav
else:
style_mel = compute_style_mel(style_wav, model.ap, cuda=use_cuda)
# convert text to sequence of token IDs
text_inputs = np.asarray(
model.tokenizer.text_to_ids(text, language=language_id),
dtype=np.int32,
)
# pass tensors to backend
if speaker_id is not None:
speaker_id = id_to_torch(speaker_id, cuda=use_cuda)
if d_vector is not None:
d_vector = embedding_to_torch(d_vector, cuda=use_cuda)
if language_id is not None:
language_id = id_to_torch(language_id, cuda=use_cuda)
if not isinstance(style_mel, dict):
style_mel = numpy_to_torch(style_mel, torch.float, cuda=use_cuda)
text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=use_cuda)
text_inputs = text_inputs.unsqueeze(0)
# synthesize voice
outputs = run_model_torch(model, text_inputs, speaker_id, style_mel, d_vector=d_vector, language_id=language_id)
model_outputs = outputs["model_outputs"]
model_outputs = model_outputs[0].data.cpu().numpy()
alignments = outputs["alignments"]
# convert outputs to numpy
# plot results
wav = None
model_outputs = model_outputs.squeeze()
if model_outputs.ndim == 2: # [T, C_spec]
if use_griffin_lim:
wav = inv_spectrogram(model_outputs, model.ap, CONFIG)
# trim silence
if do_trim_silence:
wav = trim_silence(wav, model.ap)
else: # [T,]
wav = model_outputs
return_dict = {
"wav": wav,
"alignments": alignments,
"text_inputs": text_inputs,
"outputs": outputs,
}
return return_dict
def transfer_voice(
model,
CONFIG,
use_cuda,
reference_wav,
speaker_id=None,
d_vector=None,
reference_speaker_id=None,
reference_d_vector=None,
do_trim_silence=False,
use_griffin_lim=False,
):
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to
the vocoder model.
Args:
model (TTS.tts.models):
The TTS model to synthesize audio with.
CONFIG (Coqpit):
Model configuration.
use_cuda (bool):
Enable/disable CUDA.
reference_wav (str):
Path of reference_wav to be used to voice conversion.
speaker_id (int):
Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None.
d_vector (torch.Tensor):
d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None.
reference_speaker_id (int):
Reference Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None.
reference_d_vector (torch.Tensor):
Reference d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None.
enable_eos_bos_chars (bool):
enable special chars for end of sentence and start of sentence. Defaults to False.
do_trim_silence (bool):
trim silence after synthesis. Defaults to False.
"""
# pass tensors to backend
if speaker_id is not None:
speaker_id = id_to_torch(speaker_id, cuda=use_cuda)
if d_vector is not None:
d_vector = embedding_to_torch(d_vector, cuda=use_cuda)
if reference_d_vector is not None:
reference_d_vector = embedding_to_torch(reference_d_vector, cuda=use_cuda)
# load reference_wav audio
reference_wav = embedding_to_torch(model.ap.load_wav(reference_wav, sr=model.ap.sample_rate), cuda=use_cuda)
if hasattr(model, "module"):
_func = model.module.inference_voice_conversion
else:
_func = model.inference_voice_conversion
model_outputs = _func(reference_wav, speaker_id, d_vector, reference_speaker_id, reference_d_vector)
# convert outputs to numpy
# plot results
wav = None
model_outputs = model_outputs.squeeze()
if model_outputs.ndim == 2: # [T, C_spec]
if use_griffin_lim:
wav = inv_spectrogram(model_outputs, model.ap, CONFIG)
# trim silence
if do_trim_silence:
wav = trim_silence(wav, model.ap)
else: # [T,]
wav = model_outputs
return wav