coqui-tts/vocoder/utils/io.py

52 lines
1.9 KiB
Python

import os
import torch
import datetime
def save_model(model, optimizer, model_disc, optimizer_disc, current_step,
epoch, output_path, **kwargs):
model_state = model.state_dict()
model_disc_state = model_disc.state_dict()
optimizer_state = optimizer.state_dict() if optimizer is not None else None
optimizer_disc_state = optimizer_disc.state_dict(
) if optimizer_disc is not None else None
state = {
'model': model_state,
'optimizer': optimizer_state,
'model_disc': model_disc_state,
'optimizer_disc': optimizer_disc_state,
'step': current_step,
'epoch': epoch,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
state.update(kwargs)
torch.save(state, output_path)
def save_checkpoint(model, optimizer, model_disc, optimizer_disc, current_step,
epoch, output_folder, **kwargs):
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print(" > CHECKPOINT : {}".format(checkpoint_path))
save_model(model, optimizer, model_disc, optimizer_disc, current_step,
epoch, checkpoint_path, **kwargs)
def save_best_model(target_loss, best_loss, model, optimizer, model_disc,
optimizer_disc, current_step, epoch, output_folder,
**kwargs):
if target_loss < best_loss:
file_name = 'best_model.pth.tar'
checkpoint_path = os.path.join(output_folder, file_name)
print(" > BEST MODEL : {}".format(checkpoint_path))
save_model(model,
optimizer,
model_disc,
optimizer_disc,
current_step,
epoch,
checkpoint_path,
model_loss=target_loss,
**kwargs)
best_loss = target_loss
return best_loss