coqui-tts/TTS/vocoder/models/melgan_multiscale_discrimin...

46 lines
1.7 KiB
Python

from torch import nn
from TTS.vocoder.models.melgan_discriminator import MelganDiscriminator
class MelganMultiscaleDiscriminator(nn.Module):
def __init__(self,
in_channels=1,
out_channels=1,
num_scales=3,
kernel_sizes=(5, 3),
base_channels=16,
max_channels=1024,
downsample_factors=(4, 4, 4),
pooling_kernel_size=4,
pooling_stride=2,
pooling_padding=2,
groups_denominator=4):
super(MelganMultiscaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
MelganDiscriminator(in_channels=in_channels,
out_channels=out_channels,
kernel_sizes=kernel_sizes,
base_channels=base_channels,
max_channels=max_channels,
downsample_factors=downsample_factors,
groups_denominator=groups_denominator)
for _ in range(num_scales)
])
self.pooling = nn.AvgPool1d(kernel_size=pooling_kernel_size,
stride=pooling_stride,
padding=pooling_padding,
count_include_pad=False)
def forward(self, x):
scores = list()
feats = list()
for disc in self.discriminators:
score, feat = disc(x)
scores.append(score)
feats.append(feat)
x = self.pooling(x)
return scores, feats