mirror of https://github.com/coqui-ai/TTS.git
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
import torch
|
|
|
|
from TTS.vocoder.layers.pqmf import PQMF
|
|
from TTS.vocoder.models.melgan_generator import MelganGenerator
|
|
|
|
|
|
class MultibandMelganGenerator(MelganGenerator):
|
|
def __init__(
|
|
self,
|
|
in_channels=80,
|
|
out_channels=4,
|
|
proj_kernel=7,
|
|
base_channels=384,
|
|
upsample_factors=(2, 8, 2, 2),
|
|
res_kernel=3,
|
|
num_res_blocks=3,
|
|
):
|
|
super().__init__(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
proj_kernel=proj_kernel,
|
|
base_channels=base_channels,
|
|
upsample_factors=upsample_factors,
|
|
res_kernel=res_kernel,
|
|
num_res_blocks=num_res_blocks,
|
|
)
|
|
self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)
|
|
|
|
def pqmf_analysis(self, x):
|
|
return self.pqmf_layer.analysis(x)
|
|
|
|
def pqmf_synthesis(self, x):
|
|
return self.pqmf_layer.synthesis(x)
|
|
|
|
@torch.no_grad()
|
|
def inference(self, cond_features):
|
|
cond_features = cond_features.to(self.layers[1].weight.device)
|
|
cond_features = torch.nn.functional.pad(
|
|
cond_features, (self.inference_padding, self.inference_padding), "replicate"
|
|
)
|
|
return self.pqmf_synthesis(self.layers(cond_features))
|