coqui-tts/tests/test_tacotron_model.py

144 lines
6.1 KiB
Python

import os
import copy
import torch
import unittest
from torch import optim
from torch import nn
from TTS.utils.generic_utils import load_config
from TTS.layers.losses import L1LossMasked
from TTS.models.tacotron import Tacotron
from TTS.models.tacotrongst import TacotronGST
#pylint: disable=unused-variable
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
file_path = os.path.dirname(os.path.realpath(__file__))
c = load_config(os.path.join(file_path, 'test_config.json'))
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# class TacotronTrainTest(unittest.TestCase):
# def test_train_step(self):
# input = torch.randint(0, 24, (8, 128)).long().to(device)
# input_lengths = torch.randint(100, 129, (8, )).long().to(device)
# input_lengths[-1] = 128
# mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
# linear_spec = torch.rand(8, 30, c.audio['num_freq']).to(device)
# mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
# stop_targets = torch.zeros(8, 30, 1).float().to(device)
# speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
# for idx in mel_lengths:
# stop_targets[:, int(idx.item()):, 0] = 1.0
# stop_targets = stop_targets.view(input.shape[0],
# stop_targets.size(1) // c.r, -1)
# stop_targets = (stop_targets.sum(2) >
# 0.0).unsqueeze(2).float().squeeze()
# criterion = L1LossMasked().to(device)
# criterion_st = nn.BCEWithLogitsLoss().to(device)
# model = Tacotron(
# num_chars=32,
# num_speakers=5,
# linear_dim=c.audio['num_freq'],
# mel_dim=c.audio['num_mels'],
# r=c.r,
# memory_size=c.memory_size).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
# model.train()
# print(" > Num parameters for Tacotron model:%s"%(count_parameters(model)))
# model_ref = copy.deepcopy(model)
# count = 0
# for param, param_ref in zip(model.parameters(),
# model_ref.parameters()):
# assert (param - param_ref).sum() == 0, param
# count += 1
# optimizer = optim.Adam(model.parameters(), lr=c.lr)
# for _ in range(5):
# mel_out, linear_out, align, stop_tokens = model.forward(
# input, input_lengths, mel_spec, speaker_ids)
# optimizer.zero_grad()
# loss = criterion(mel_out, mel_spec, mel_lengths)
# stop_loss = criterion_st(stop_tokens, stop_targets)
# loss = loss + criterion(linear_out, linear_spec,
# mel_lengths) + stop_loss
# loss.backward()
# optimizer.step()
# # check parameter changes
# count = 0
# for param, param_ref in zip(model.parameters(),
# model_ref.parameters()):
# # ignore pre-higway layer since it works conditional
# # if count not in [145, 59]:
# assert (param != param_ref).any(
# ), "param {} with shape {} not updated!! \n{}\n{}".format(
# count, param.shape, param, param_ref)
# count += 1
class TacotronGSTTrainTest(unittest.TestCase):
def test_train_step(self):
input = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(8, 120, c.audio['num_mels']).to(device)
linear_spec = torch.rand(8, 120, c.audio['num_freq']).to(device)
mel_lengths = torch.randint(20, 120, (8, )).long().to(device)
stop_targets = torch.zeros(8, 120, 1).float().to(device)
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
for idx in mel_lengths:
stop_targets[:, int(idx.item()):, 0] = 1.0
stop_targets = stop_targets.view(input.shape[0],
stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) >
0.0).unsqueeze(2).float().squeeze()
criterion = L1LossMasked().to(device)
criterion_st = nn.BCEWithLogitsLoss().to(device)
model = TacotronGST(
num_chars=32,
num_speakers=5,
linear_dim=c.audio['num_freq'],
mel_dim=c.audio['num_mels'],
r=c.r,
memory_size=c.memory_size).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
model.train()
print(model)
print(" > Num parameters for Tacotron GST model:%s"%(count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(),
model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=c.lr)
for _ in range(10):
mel_out, linear_out, align, stop_tokens = model.forward(
input, input_lengths, mel_spec, speaker_ids)
optimizer.zero_grad()
loss = criterion(mel_out, mel_spec, mel_lengths)
stop_loss = criterion_st(stop_tokens, stop_targets)
loss = loss + criterion(linear_out, linear_spec,
mel_lengths) + stop_loss
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(),
model_ref.parameters()):
# ignore pre-higway layer since it works conditional
assert (param != param_ref).any(
), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref)
count += 1