mirror of https://github.com/coqui-ai/TTS.git
212 lines
7.3 KiB
Python
Executable File
212 lines
7.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import argparse
|
|
import sys
|
|
from argparse import RawTextHelpFormatter
|
|
|
|
# pylint: disable=redefined-outer-name, unused-argument
|
|
from pathlib import Path
|
|
|
|
from TTS.utils.manage import ModelManager
|
|
from TTS.utils.synthesizer import Synthesizer
|
|
|
|
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ("yes", "true", "t", "y", "1"):
|
|
return True
|
|
if v.lower() in ("no", "false", "f", "n", "0"):
|
|
return False
|
|
raise argparse.ArgumentTypeError("Boolean value expected.")
|
|
|
|
|
|
def main():
|
|
# pylint: disable=bad-option-value
|
|
parser = argparse.ArgumentParser(
|
|
description="""Synthesize speech on command line.\n\n"""
|
|
"""You can either use your trained model or choose a model from the provided list.\n\n"""
|
|
"""If you don't specify any models, then it uses LJSpeech based English models\n\n"""
|
|
"""
|
|
Example runs:
|
|
|
|
# list provided models
|
|
./TTS/bin/synthesize.py --list_models
|
|
|
|
# run tts with default models.
|
|
./TTS/bin synthesize.py --text "Text for TTS"
|
|
|
|
# run a tts model with its default vocoder model.
|
|
./TTS/bin synthesize.py --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>"
|
|
|
|
# run with specific tts and vocoder models from the list
|
|
./TTS/bin/synthesize.py --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" --vocoder_name "<language>/<dataset>/<model_name>" --output_path
|
|
|
|
# run your own TTS model (Using Griffin-Lim Vocoder)
|
|
./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/model.pth.tar --config_path path/to/config.json --out_path output/path/speech.wav
|
|
|
|
# run your own TTS and Vocoder models
|
|
./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth.tar --out_path output/path/speech.wav
|
|
--vocoder_path path/to/vocoder.pth.tar --vocoder_config_path path/to/vocoder_config.json
|
|
|
|
""",
|
|
formatter_class=RawTextHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--list_models",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="list available pre-trained tts and vocoder models.",
|
|
)
|
|
parser.add_argument("--text", type=str, default=None, help="Text to generate speech.")
|
|
|
|
# Args for running pre-trained TTS models.
|
|
parser.add_argument(
|
|
"--model_name",
|
|
type=str,
|
|
default="tts_models/en/ljspeech/tacotron2-DDC",
|
|
help="Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>",
|
|
)
|
|
parser.add_argument(
|
|
"--vocoder_name",
|
|
type=str,
|
|
default=None,
|
|
help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>",
|
|
)
|
|
|
|
# Args for running custom models
|
|
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.")
|
|
parser.add_argument(
|
|
"--model_path",
|
|
type=str,
|
|
default=None,
|
|
help="Path to model file.",
|
|
)
|
|
parser.add_argument(
|
|
"--out_path",
|
|
type=str,
|
|
default="tts_output.wav",
|
|
help="Output wav file path.",
|
|
)
|
|
parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False)
|
|
parser.add_argument(
|
|
"--vocoder_path",
|
|
type=str,
|
|
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).",
|
|
default=None,
|
|
)
|
|
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None)
|
|
parser.add_argument(
|
|
"--encoder_path",
|
|
type=str,
|
|
help="Path to speaker encoder model file.",
|
|
default=None,
|
|
)
|
|
parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None)
|
|
|
|
# args for multi-speaker synthesis
|
|
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
|
|
parser.add_argument(
|
|
"--speaker_idx",
|
|
type=str,
|
|
help="if the tts model is trained with x-vectors, then speaker_idx is a file present in speakers.json else speaker_idx is the speaker id corresponding to a speaker in the speaker embedding layer.",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--speaker_wav",
|
|
nargs="+",
|
|
help="wav file(s) to condition a multi-speaker model. You can give multiple file paths. The x_vectors is computed as their average.",
|
|
default=None,
|
|
)
|
|
parser.add_argument("--gst_style", help="Wav path file for GST stylereference.", default=None)
|
|
parser.add_argument(
|
|
"--list_speaker_idxs",
|
|
help="List available speaker ids for the defined multi-speaker model.",
|
|
default=False,
|
|
type=str2bool,
|
|
)
|
|
# aux args
|
|
parser.add_argument(
|
|
"--save_spectogram",
|
|
type=bool,
|
|
help="If true save raw spectogram for further (vocoder) processing in out_path.",
|
|
default=False,
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# print the description if either text or list_models is not set
|
|
if args.text is None and not args.list_models:
|
|
parser.parse_args(["-h"])
|
|
|
|
# load model manager
|
|
path = Path(__file__).parent / "../.models.json"
|
|
manager = ModelManager(path)
|
|
|
|
model_path = None
|
|
config_path = None
|
|
speakers_file_path = None
|
|
vocoder_path = None
|
|
vocoder_config_path = None
|
|
encoder_path = None
|
|
encoder_config_path = None
|
|
|
|
# CASE1: list pre-trained TTS models
|
|
if args.list_models:
|
|
manager.list_models()
|
|
sys.exit()
|
|
|
|
# CASE2: load pre-trained model paths
|
|
if args.model_name is not None and not args.model_path:
|
|
model_path, config_path, model_item = manager.download_model(args.model_name)
|
|
args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name
|
|
|
|
if args.vocoder_name is not None and not args.vocoder_path:
|
|
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)
|
|
|
|
# CASE3: set custome model paths
|
|
if args.model_path is not None:
|
|
model_path = args.model_path
|
|
config_path = args.config_path
|
|
speakers_file_path = args.speakers_file_path
|
|
|
|
if args.vocoder_path is not None:
|
|
vocoder_path = args.vocoder_path
|
|
vocoder_config_path = args.vocoder_config_path
|
|
|
|
if args.encoder_path is not None:
|
|
encoder_path = args.encoder_path
|
|
encoder_config_path = args.encoder_config_path
|
|
|
|
# load models
|
|
synthesizer = Synthesizer(
|
|
model_path, config_path, speakers_file_path, vocoder_path, vocoder_config_path, encoder_path,
|
|
encoder_config_path, args.use_cuda
|
|
)
|
|
|
|
# query speaker ids of a multi-speaker model.
|
|
if args.list_speaker_idxs:
|
|
print(
|
|
" > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model."
|
|
)
|
|
print(synthesizer.speaker_manager.speaker_ids)
|
|
return
|
|
|
|
# RUN THE SYNTHESIS
|
|
print(" > Text: {}".format(args.text))
|
|
|
|
# kick it
|
|
wav = synthesizer.tts(args.text, args.speaker_idx, args.speaker_wav)
|
|
|
|
# save the results
|
|
print(" > Saving output to {}".format(args.out_path))
|
|
synthesizer.save_wav(wav, args.out_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|