mirror of https://github.com/coqui-ai/TTS.git
198 lines
5.4 KiB
Python
198 lines
5.4 KiB
Python
import os
|
|
import re
|
|
|
|
import inflect
|
|
import torch
|
|
from tokenizers import Tokenizer
|
|
|
|
# Regular expression matching whitespace:
|
|
from unidecode import unidecode
|
|
|
|
_whitespace_re = re.compile(r"\s+")
|
|
|
|
|
|
# List of (regular expression, replacement) pairs for abbreviations:
|
|
_abbreviations = [
|
|
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
|
for x in [
|
|
("mrs", "misess"),
|
|
("mr", "mister"),
|
|
("dr", "doctor"),
|
|
("st", "saint"),
|
|
("co", "company"),
|
|
("jr", "junior"),
|
|
("maj", "major"),
|
|
("gen", "general"),
|
|
("drs", "doctors"),
|
|
("rev", "reverend"),
|
|
("lt", "lieutenant"),
|
|
("hon", "honorable"),
|
|
("sgt", "sergeant"),
|
|
("capt", "captain"),
|
|
("esq", "esquire"),
|
|
("ltd", "limited"),
|
|
("col", "colonel"),
|
|
("ft", "fort"),
|
|
]
|
|
]
|
|
|
|
|
|
def expand_abbreviations(text):
|
|
for regex, replacement in _abbreviations:
|
|
text = re.sub(regex, replacement, text)
|
|
return text
|
|
|
|
|
|
_inflect = inflect.engine()
|
|
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
|
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
|
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
|
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
|
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
|
_number_re = re.compile(r"[0-9]+")
|
|
|
|
|
|
def _remove_commas(m):
|
|
return m.group(1).replace(",", "")
|
|
|
|
|
|
def _expand_decimal_point(m):
|
|
return m.group(1).replace(".", " point ")
|
|
|
|
|
|
def _expand_dollars(m):
|
|
match = m.group(1)
|
|
parts = match.split(".")
|
|
if len(parts) > 2:
|
|
return match + " dollars" # Unexpected format
|
|
dollars = int(parts[0]) if parts[0] else 0
|
|
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
|
if dollars and cents:
|
|
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
|
cent_unit = "cent" if cents == 1 else "cents"
|
|
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
|
|
elif dollars:
|
|
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
|
return "%s %s" % (dollars, dollar_unit)
|
|
elif cents:
|
|
cent_unit = "cent" if cents == 1 else "cents"
|
|
return "%s %s" % (cents, cent_unit)
|
|
else:
|
|
return "zero dollars"
|
|
|
|
|
|
def _expand_ordinal(m):
|
|
return _inflect.number_to_words(m.group(0))
|
|
|
|
|
|
def _expand_number(m):
|
|
num = int(m.group(0))
|
|
if num > 1000 and num < 3000:
|
|
if num == 2000:
|
|
return "two thousand"
|
|
elif num > 2000 and num < 2010:
|
|
return "two thousand " + _inflect.number_to_words(num % 100)
|
|
elif num % 100 == 0:
|
|
return _inflect.number_to_words(num // 100) + " hundred"
|
|
else:
|
|
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
|
|
else:
|
|
return _inflect.number_to_words(num, andword="")
|
|
|
|
|
|
def normalize_numbers(text):
|
|
text = re.sub(_comma_number_re, _remove_commas, text)
|
|
text = re.sub(_pounds_re, r"\1 pounds", text)
|
|
text = re.sub(_dollars_re, _expand_dollars, text)
|
|
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
|
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
|
text = re.sub(_number_re, _expand_number, text)
|
|
return text
|
|
|
|
|
|
def expand_numbers(text):
|
|
return normalize_numbers(text)
|
|
|
|
|
|
def lowercase(text):
|
|
return text.lower()
|
|
|
|
|
|
def collapse_whitespace(text):
|
|
return re.sub(_whitespace_re, " ", text)
|
|
|
|
|
|
def convert_to_ascii(text):
|
|
return unidecode(text)
|
|
|
|
|
|
def basic_cleaners(text):
|
|
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
|
text = lowercase(text)
|
|
text = collapse_whitespace(text)
|
|
return text
|
|
|
|
|
|
def transliteration_cleaners(text):
|
|
"""Pipeline for non-English text that transliterates to ASCII."""
|
|
text = convert_to_ascii(text)
|
|
text = lowercase(text)
|
|
text = collapse_whitespace(text)
|
|
return text
|
|
|
|
|
|
def english_cleaners(text):
|
|
"""Pipeline for English text, including number and abbreviation expansion."""
|
|
text = convert_to_ascii(text)
|
|
text = lowercase(text)
|
|
text = expand_numbers(text)
|
|
text = expand_abbreviations(text)
|
|
text = collapse_whitespace(text)
|
|
text = text.replace('"', "")
|
|
return text
|
|
|
|
|
|
def lev_distance(s1, s2):
|
|
if len(s1) > len(s2):
|
|
s1, s2 = s2, s1
|
|
|
|
distances = range(len(s1) + 1)
|
|
for i2, c2 in enumerate(s2):
|
|
distances_ = [i2 + 1]
|
|
for i1, c1 in enumerate(s1):
|
|
if c1 == c2:
|
|
distances_.append(distances[i1])
|
|
else:
|
|
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
|
|
distances = distances_
|
|
return distances[-1]
|
|
|
|
|
|
DEFAULT_VOCAB_FILE = os.path.join(
|
|
os.path.dirname(os.path.realpath(__file__)), "../../utils/assets/tortoise/tokenizer.json"
|
|
)
|
|
|
|
|
|
class VoiceBpeTokenizer:
|
|
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE):
|
|
if vocab_file is not None:
|
|
self.tokenizer = Tokenizer.from_file(vocab_file)
|
|
|
|
def preprocess_text(self, txt):
|
|
txt = english_cleaners(txt)
|
|
return txt
|
|
|
|
def encode(self, txt):
|
|
txt = self.preprocess_text(txt)
|
|
txt = txt.replace(" ", "[SPACE]")
|
|
return self.tokenizer.encode(txt).ids
|
|
|
|
def decode(self, seq):
|
|
if isinstance(seq, torch.Tensor):
|
|
seq = seq.cpu().numpy()
|
|
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "")
|
|
txt = txt.replace("[SPACE]", " ")
|
|
txt = txt.replace("[STOP]", "")
|
|
txt = txt.replace("[UNK]", "")
|
|
return txt
|